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Introducing the Boost libraries: the next breakthrough in C++ programming

Boost takes you far beyond the C++ Standard Library, making C++ programming more elegant, robust, and
productive. Now, for the first time, a leading Boost expert systematically introduces the broad set of Boost libraries
and teaches best practices for their use.

Writing for intermediate-to-advanced C++ developers, Björn Karlsson briefly outlines all 58 Boost libraries, and
then presents comprehensive coverage of 12 libraries you're likely to find especially useful. Karlsson's topics range
from smart pointers and conversions to containers and data structures, explaining exactly how using each library can
improve your code. He offers detailed coverage of higher-order function objects that enable you to write code that
is more concise, expressive, and readable. He even takes you "behind the scenes" with Boost, revealing tools and
techniques for creating your own generic libraries.

Coverage includes


Smart pointers that provide automatic lifetime management of objects and simplify resource sharing


Consistent, best-practice solutions for performing type conversions and lexical conversions


Utility classes that make programming simpler and clearer


Flexible container libraries that solve common problems not covered by the C++ Standard Library


Powerful support for regular expressions with Boost.Regex


Function objects defined at the call site with Boost.Bind and Boost.Lambda


More flexible callbacks with Boost.Function


Managed signals and slots (a.k.a. the Observer pattern) with Boost.Signals

The Boost libraries are proving so useful that many of them are planned for inclusion in the next version of the C++
Standard Library. Get your head start now, with Beyond the C++ Standard Library.

 © Copyright Pearson Education. All rights reserved.
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Foreword
Good things are happening in the C++ community. Although C++ remains the most widely used programming
language in the world, it is becoming even more powerful and yet easier to use. Skeptical? Bear with me.

The current version of standard C++, which was finalized in 1998, offers robust support for traditional procedural
programming as well as object-oriented and generic programming. Just as old (pre-1998) C++ was single-handedly
responsible for putting object-oriented within the reach of the workaday software developer, C++98 has done the
same for generic programming. The integration of the Standard Template Library (STL) into standard C++ in the
mid-1990s represented as much a paradigm shift as did Bjarne Stroustrup's adding classes to C in the early 1980s.
Now that the majority of C++ practitioners are proficient with concepts of STL, it's once again time to raise the bar.

Applications of the power of C++ are still being discovered. Many of today's C++ libraries, and mathematical
libraries in particular, take routine advantage of template metaprogramming, a fortuitous but unforeseen result of the
brilliant design of C++ templates. As higher-level tools and techniques come to light in the C++ community,
developing increasingly complex applications is becoming more straightforward and enjoyable.

It is difficult to overstate the importance of Boost to the world of C++. Since the ratification of C++98, no entity
outside of the ISO Committee for Standard C++ (called WG21) has done more to influence the direction of C++
than has Boost (and many Boost subscribers are prominent members of WG21, including its founder, my friend
Beman Dawes). The thousands of experienced Boost volunteers have, in unselfish, peer-reviewed fashion, developed
many useful library solutions not provided by C++98. Ten of its offerings have already been accepted to be integrated
into the upcoming C++0x library, and more are under consideration. Where a library approach has been shown to be
wanting, the wisdom gained from the cross-pollination of Boost and WG21 has suggested a few modest language
enhancements, which are now being entertained.

In the rare case that you haven't heard of Boost, let me ask…do you need to convert between text and numbers or
(better yet) between any streamable types? No problemuse Boost.lexical_cast. Oh, you have more sophisticated text
processing requirements? Then Boost.Tokenizer or Boost.Regex might be for you, or Boost.Spirit, if you need
full-blown parsing. Boost.Bind will amaze you with its function projection and composition capabilities. For functional
programming there is Boost.Lambda. Static assertions? Got 'em. If you're mathematically inclined, get your pencil out:
You have Boost.Math, Graph, Quaternion, Octonion, MultiArray, Random, and Rational. If you are fortunate enough
to have discovered the joy of Python, you can use it and C++ together with the help of Boost.Python. And you can
practically pick your platform for all of the above.

Björn Karlsson is a Boost enthusiast and a heartfelt supporter of the C++ community. He has published useful and
well-written articles in the C/C++ Users Journal and, more recently, for The C++ Source, a new online voice for the
C++ community (see www.artima.com/cppsource). In this volume, he motivates and illustrates key Boost
components, and shows how they work with and extend the C++ Standard Library. Consider this not only an
in-depth tutorial on Boost, but also a foretaste of the future version of Standard C++. Enjoy!

Chuck Allison, Editor, The C++ Source

http://www.artima.com/cppsource


Preface
Dear Reader,

Welcome to Beyond the C++ Standard Library: An Introduction to Boost.

If you are interested in generic programming, library design, and the C++ Standard Library, this book is for you.
Because the intended audience for the book is intermediate to advanced C++ programmers, there is little coverage of
basic C++ concepts. As the title suggests, the focus of this book is on the Boost librariesgeneral usage, best practices,
implementation techniques, and design rationale.

Almost from the day I discovered Boost, the people behind it, and the extraordinary libraries in it, I've wanted to
write this book. It is amazing that a language as mature as C++ still offers room for exploration into higher-level
abstractions as well as technical detail, all without requiring changes to the language. Of course, this is what sets C++
apart from many other programming languages: It is specifically and intentionally designed for extension, and the
language's facilities for generic constructs are extremely powerful. This exploration is at the core of the Boost libraries
and the Boost community itself. Boost is about making programming in C++ more elegant, more robust, and more
productive. As discoveries are made and best practices are shaped, a great challenge faces the C++ community; to
share this knowledge with others. In isolation, there is limited value to these remarkable findings, but when exposed to
a larger audience, a whole industry will evolve.

This book shows how to use a selection of the wonderfully useful Boost libraries, teaches best practices for their use,
and even goes behind the scenes to see how they actually work. The Boost libraries' license grants permission to
copy, use, and modify the software for any use (commercial and non-commercial), so all you need to do is visit 
www.boost.org and download the latest version.

For all the C++ Standard Library aficionados out there, it is well known that a new revision of the Standard Library is
in progress. From a standardization point of view, there are three primary areas where the C++ Standard Library is
likely to change:



Fixing broken libraries


Augmenting missing features to existing libraries


Adding libraries that provide functionality that is missing in the Standard Library

The Boost libraries address all of these areas in one way or another. Of the 12 libraries covered in this book, six have
already been accepted for inclusion in the upcoming Library Technical Report, which means that they will most likely
be part of the next version of the Standard Library. Thus, learning about these libraries has excellent long-term value. I
hope that you will find this book to be a valuable tool for using, understanding, and extending the Boost libraries.
From that vantage, you'll want to incorporate those libraries and the knowledge enshrined within them into your own
designs and implementations. That's what I call reuse.

Thank you for reading.

Björn Karlsson

http://www.boost.org
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Organization of This Book
This book is divided into three main parts, each containing libraries pertaining to a certain domain, but there is
definitely overlap. These divisions exist to make it easier to find relevant information for your task at hand or to read
the book and find related topics grouped together. Most of the chapters cover a single library, but a few consist of
small collections.

The typesetting and coding style is intentionally kept simple. There are a number of popular best practices in this area,
and I've just picked one I feel that most people are accustomed to, and that will convey information easily.
Furthermore, the coding style in this book purposely tries to save some vertical space by avoiding curly braces on
separate lines.

Although the examples in most books make heavy use of using declarations and using directives, this is not the case
here. I have done my best to qualify names in the interest of clarity. There is an additional benefit to doing so in this
book, and that is to show where the types and functions come from. If something is from the Standard Library, it will
be prefixed with std::. If it's from Boost, it will be prefixed with boost::.

Some of the libraries covered by this book are very extensive, which makes it impossible to include detailed
explanations of all aspects of the library. When this is the case, there's typically a note stating that there is more to
know, with references to the online documentation, related literature, or both. Also, I have tried to focus on the things
that are of the most immediate use, and that have a strong relation with the C++ Standard Library.

The first part of this book covers general libraries, which are libraries that are eminently useful, but have no other
obvious affinity. The second discusses important data structures and containers. The third is about higher-order
programming. There's no requirement to read about the libraries in a specific order, but it certainly doesn't hurt to
follow tradition and start from the beginning.

Before getting to the in-depth look at the covered Boost libraries, a survey of each of the currently available Boost
libraries will introduce you to the Boost libraries and give context for those that I'll address in the rest of the book. It
gives an interesting overview of the versatility of this world-class collection of C++ libraries.



Introduction to Boost
Because you are reading this book, I expect that you are somewhat familiar with the Boost libraries, or that you at
least have heard of Boost. There are a great number of libraries in Boost, and there are few, if any, that will not be of
at least some interest to you. As a result, you will most definitely find libraries you can put to immediate use. The
Boost libraries range over a wide variety of domainsfrom numeric libraries to smart pointers, from a library for
template metaprogramming to a preprocessor library, from threading to lambda expressions, and so on. All of the
Boost libraries are compatible with a very generous license, which ensures that the libraries can be freely used in
commercial applications. Support is available through newsgroups, where much of the activity of the Boost community
takes place, and there is at least one company that specializes in consulting related to the Boost libraries. For an online
introduction to the Boost community, I strongly suggest that you visit Boost on the Web at www.boost.org.

As of the time of this writing, the current Boost release is 1.32.0. In it, there are 58 separate libraries. The following
pages introduce all 58 of those libraries sorted by category and give a short description of what the libraries have to
offer. For the libraries not covered in detail in this book, have a look at the documentation provided at 
www.boost.org, which is also where you go to download the Boost libraries.

http://www.boost.org
http://www.boost.org


String and Text Processing

 Boost.Regex

 Regular expressions are essential for solving a great number of pattern-matching problems. They are often used to
process large strings, find inexact substrings, tokenize a string depending on some format, or modify a string based on
certain criteria. The lack of regular expressions support in C++ has sometimes forced users to look at other languages
known for their powerful regular expression support, such as Perl, awk, and sed. Regex provides efficient and
powerful regular expression support, designed on the same premises as the Standard Template Library (STL), which
makes it intuitive to use. Regex has been accepted for the upcoming Library Technical Report. For more information,
see "Library 5: Regex."

 The author of Regex is Dr. John Maddock.

 Boost.Spirit

 The Spirit library is a functional, recursive-decent parser generator framework. With it, you can create command-line
parsers, even a language preprocessor.[1] It allows the programmer to specify the grammar rules directly in C++
code, using (an approximation of) EBNF syntax. Parsers are typically hard to write properly, and when targeted at a
specific problem, they quickly become hard to maintain and understand. Spirit avoids these problems, while giving the
same or nearly the same performance as a hand-tuned parser.

[1] The Wave library illustrates this point by using Spirit to implement a highly conformant C++ preprocessor.

 The author of Spirit is Joel de Guzman, together with a team of skilled programmers.

 Boost.String_algo

 This is a collection of string-related algorithms. There are a number of useful algorithms for converting case, trimming
strings, splitting strings, finding/replacing, and so forth. This collection of algorithms is an extension to those in the C++
Standard Library.

 The author of String_algo is Pavol Droba.

 Boost.Tokenizer

 This library offers ways of separating character sequences into tokens. Common parsing tasks include finding the
data in delimited text streams. It is beneficial to be able to treat such a sequence as a container of elements, where the
elements are delimited according to user-defined criteria. Parsing is a separate task from operating on the elements,
and it is exactly this abstraction that is offered by Tokenizer. The user determines how the character sequence is
delimited, and the library finds the tokens as the user requests new elements.

 The author of Tokenizer is John Bandela.





Data Structures, Containers, Iterators, and Algorithms

 Boost.Any

 The Any library supports typesafe storage and retrieval of values of any type. When the need for a variant type
arises, there are three possible solutions:



 Indiscriminate types, such as void*. This solution can almost never be made typesafe; avoid it like the plague.


Variant typesthat is, types that support the storage and retrieval of a set of types.


Types that support conversions, such as between string types and integral types.

 Any implements the second solutiona value-based variant type, with an unbounded set of possible types. The library
is often used for storing heterogeneous types in Standard Library containers. Read more in "Library 6: Any."

 The author of Any is Kevlin Henney.

 Boost.Array

 This library is a wrapper around ordinary C-style arrays, augmenting them with the functions and typedefs from the
Standard Library containers. In effect, this makes it possible to treat ordinary arrays as Standard Library containers.
This is useful because it adds safety without impeding efficiency and it enables uniform syntax for Standard Library
containers and ordinary arrays. The latter means that it enables the use of ordinary arrays with most functions that
require a container type to operate on. Array is typically used when performance issues mandate that ordinary arrays
be used rather than std::vector.

 The author of Array is Nicolai Josuttis, who built the library upon ideas brought forth by Matt Austern and Bjarne
Stroustrup.

 Boost.Compressed_pair

 This library consists of a single parameterized type, compressed_pair, which is very similar to the Standard Library's
std::pair. The difference from std::pair is that boost::compressed_pair evaluates the template arguments to see if one of
them is empty and, if so, uses the empty base optimization to compress the size of the pair.

 Boost.Compressed_pair is used for storing a pair, where one or both of the types is possibly empty.

 The authors of Compressed_pair are Steve Cleary, Beman Dawes, Howard Hinnant, and John Maddock.

 Boost.Dynamic_bitset

 The Dynamic_bitset library very closely resembles std::bitset, except that whereas std::bitset is parameterized on the
number of bits (that is, the size of the container), boost::dynamic_bitset supports runtime size configuration. Although
dynamic_bitset supports the same interface as std::bitset, it adds functions that support runtime-specific functionality
and some that aren't available in std::bitset. The library is typically used instead of std::bitset, in scenarios where the
size of the bitset isn't necessarily known at compile time, or may change during program execution.

 The authors of Dynamic_bitset are Jeremy Siek and Chuck Allison.

 Boost.Graph

 Graph is a library for processing graph structures, using a design heavily influenced by the STL. It is generic and
highly configurable, and includes different data structures: adjacency lists, adjacency matrices, and edge lists. Graph
also provides a large number of graph algorithms, such as Dijsktra's shortest path, Kruskal's minimum spanning tree,
topological sort, and many more.

 The authors of Graph are Jeremy Siek, Lie-Quan Lee, and Andrew Lumsdaine.

 Boost.Iterator

 This library provides a framework for creating new iterator types, and it also offers a number of useful iterator
adaptors beyond those defined by the C++ Standard. Creating new iterator types that conform to the standard is a
difficult and tedious task. Iterator simplifies that task by automating most of the details, such as providing the required
typedefs. Iterator also makes it possible to adapt an existing iterator type to give it new behavior. For example, the
indirect iterator adaptor applies an extra dereferencing operation, making it possible to treat a container of pointers
(or smart pointers) to a type as if it contained objects of that type.

 The authors of Iterator are Jeremy Siek, David Abrahams, and Thomas Witt.

 Boost.MultiArray

 MultiArray provides a multidimensional container that closely resembles the Standard Library containers and is more
effective, efficient, and straightforward than vectors of vectors. The dimensions of the container are set at declaration
time, but there is support for slicing and projecting different views, and also runtime resizing of the dimensions.

 The author of MultiArray is Ronald Garcia.

 Boost.Multi-index

 Multi-index offers multiple indices into an underlying container. This means that it is possible to have different sorting
orders and different access semantics for one underlying container. Boost.Multi-index is used when std::set and
std::map isn't enough, often due to the need of maintaining multiple indices for efficient element retrieval.

 The author of Multi-index is Joaquín M López Muñoz.

 Boost.Range

 This library is a collection of concepts and utilities for ranges. Rather than having algorithms be specified in terms of
pairs of iterators for denoting ranges, using ranges greatly simplifies the use of algorithms and raises the abstraction
level of user code.

 The author of Range is Thorsten Ottosen.

 Boost.Tuple

 Pairs are available in Standard C++ (from the class template std::pair), but there is currently no support for n-tuples.
Enter Tuple. Unlike when using structs or classes for defining n-tuples, the class template tuple supports direct
declaration and use as function return type or argument, and provides a generic way of accessing the tuple's elements.
See "Library 8: Tuple 8" for the details of this great library. Tuple has been accepted for the upcoming Library
Technical Report.

 The author of Tuple is Jaakko Järvi.

 Boost.Variant

 The Variant library contains a generic discriminated union class for storing and manipulating an object from a set of
heterogeneous types. A unique feature of the library is the support for type-safe visitation, which alleviates the
common problem of type-switching code for variant data types.

 The authors of Variant are Eric Friedman and Itay Maman.







Function Objects and Higher-Order Programming

 Boost.Bind

 Bind is a generalization of the Standard Library binders, bind1st and bind2nd. The library supports binding arguments
to anything that behaves like a functionfunction pointers, function objects, and member function pointers with a
uniform syntax. It also enables functional composition by means of nested binders. This library does not have all of the
requirements that are imposed by the Standard Library binders, most notably that there is often no need to provide
the typedefs result_type, first_argument_type, and second_argument_type for your classes. This library also makes it
unnecessary to use the adaptors ptr_fun, mem_fun, and mem_fun_ref. The Bind library is thoroughly covered in "
Library 9: Bind 9." It's an important and very useful addition to the C++ Standard Library. Bind is typically used with
the Standard Library algorithms, and is often used together with Boost.Function, yielding a powerful tool for storing
arbitrary functions and function objects for subsequent invocation. Bind has been accepted for the upcoming Library
Technical Report.

 The author of Bind is Peter Dimov.

 Boost.Function

 The Function library implements a generalized callback mechanism. It provides for the storage and subsequent
invocation of function pointers, function objects, and member function pointers. Of course, it works with binder
libraries such as Boost.Bind and Boost.Lambda, which greatly increases the number of use cases for callbacks
(including stateful callback functions). The library is covered in detail in "Library 11: Function 11." Function is typically
used where a function pointer would otherwise be employed to provide callbacks. Examples of usage are in signal/slot
implementations, separation of GUIs from business logic, and storage of heterogeneous function-like types in
Standard Library containers. Function has been accepted for the upcoming Library Technical Report.

 The author of Function is Douglas Gregor.

 Boost.Functional

 The Functional library provides enhanced versions of the adapters in the C++ Standard Library. The major
advantage is that it helps solve the problem with references to references (which are illegal) that arise when using the
Standard Library binders with functions taking one or more arguments by reference. Functional also obviates the use
of ptr_fun for using function pointers with the Standard Library algorithms.

 The author of Functional is Mark Rodgers.

 Boost.Lambda

 Lambda provides lambda expressionsunnamed functionsfor C++. Especially useful when using the Standard Library
algorithms, Lambda allows functions to be created at the call site, which avoids the creation of many small function
objects. Using lambdas means writing less code, and writing it in the location where it's to be used, which is much
clearer and maintainable than scattering function objects around the code base. "Library 10: Lambda 10" covers this
library in detail.

 The authors of Lambda are Jaakko Järvi and Gary Powell.

 Boost.Ref

 Many function templates, including a large number from the Standard C++ Library, take their arguments by value,
which is sometimes problematic. It may be expensive or impossible to copy an object, or the state may be tied to a
particular instance, so copying is unwanted. In these situations, one needs a way to pass by reference rather than by
value. Ref wraps a reference to an object and turns it into an object that may be copied. This permits calling functions
taking their arguments by value with a reference. Ref has been accepted for the upcoming Library Technical Report.

 The authors of Ref are Jaakko Järvi, Peter Dimov, Douglas Gregor, and David Abrahams.

 Boost.Signals

 Signals and slots systems, based on a pattern also known as publisher-subscriber and observer, are important tools
for managing events in a system with a minimum of dependencies. Few large applications get by without some
variation of this powerful design pattern, though typically they use proprietary implementations. Signals provides a
proven and efficient means to decouple the emission of signals (events/subjects) from the slots (subscribers/observers)
that need notification of those signals.

 The author of Signals is Douglas Gregor.







Generic Programming and Template Metaprogramming

 Boost.Call_traits

 This library provides automatic deduction of the best way of passing arguments to functions, based upon on the
argument type. For example, when passing built-in types such as int and double, it is most efficient to pass them by
value. For user-defined types, passing them by reference to const is generally preferable. Call_traits automatically
selects the right argument type for you. The library also helps in declaring arguments as references, without imposing
restrictions or risking references to references (which are illegal in C++). Call_traits is typically used with generic
functions that require the most efficient way of passing arguments without knowing much about the argument types
beforehand, and to avoid the reference-to-reference problem.

 The authors of Call_traits are Steve Cleary, Beman Dawes, Howard Hinnant, and John Maddock.

 Boost.Concept_check

 Concept_check supplies class templates that are used to test certain concepts (set of requirements). Generic (as in
parameterized) code typically requires that the types with which it is instantiated model some abstraction, such as
LessThanComparable. This library provides the means to explicitly state the requirements of the parameterizing types
for templates. Clients of the code benefit because the requirements are documented and because the compiler can
produce an error message that explicitly states how a type failed to meet them. Boost.Concept_check provides more
than 30 concepts that can be used for generic code, and several archetypes that may be used to verify that
component implementations include all relevant concepts. It is used to assert and document the requirements for
concepts in generic code.

 The author of Concept_check is Jeremy Siek, who was inspired by previous work by Alexander Stepanov and Matt
Austern.

 Boost.Enable_if

 Enable_if allows function templates or class template specializations to include or exclude themselves from a set of
matching functions or specializations. The main use cases are to include or exclude based on some property of the
parameterizing typefor example, enabling a function template only when instantiated with an integral type. The library
also offers a very useful studying opportunity of SFINAE (substitution failure is not an error).

 The authors of Enable_if are Jaakko Järvi, Jeremiah Willcock, and Andrew Lumsdaine.

 Boost.In_place_factory

 The In_place_factory library is a framework for direct construction of contained objects, including variadic argument
lists for initialization. This can reduce the typical requirement that contained types be CopyConstructible, and alleviates
the need to create unnecessary temporaries used only for the purpose of providing a source object to be copied from.
The library helps minimize the work needed to forward the arguments used for initialization of the contained object.

 The author of In_place_factory is Fernando Cacciola.

 Boost.Mpl

 Mpl is a library for template metaprogramming. It includes data structures and algorithms that closely resemble those
from the C++ Standard Library, but here they are used at compile time. There is even support for compile-time
lambda expressions! Performing compile-time operations, such as generating types or manipulating sequences of
types, is increasingly common in modern C++, and a library that offers such functionality is an extremely important
tool. To the best of my knowledge, there is nothing quite like the Mpl library in existence. It fills an important void in
the world of C++ metaprogramming. I should tell you that there's a book for Boost.Mpl in the worksby the time you
read this, it will be available. C++ Template Metaprogramming is written by Aleksey Gurtovoy and David Abrahams.
You'll want to get your hands on that one as soon as possible!

 The author of Mpl is Aleksey Gurtovoy, with important contributions from many others.

 Boost.Property_map

 Property_map is a conceptual library rather than a concrete implementation. It introduces the property_map concept
and a set of requirements for property_map types, thereby giving the syntactic and semantic requirements that are
needed to map from a key to a value. This is useful when generic code needs to state that types must support such a
mapping. C++ arrays are examples of property_maps. This library contains the definition of a concept that may be
tested using Boost.Concept_check.

 The author of Property_map is Jeremy Siek.

 Boost.Static_assert

 A common need when doing compile-time programming is to perform static assertionsthat is, compile-time
assertions. Furthermore, it's nontrivial to get consistent errors, which is what static assertions must produce to signal a
failed assertion, across different compilers. Static_assert provides support for static assertions at namespace, class,
and function scope. Detailed information is available in "Library 3: Utility."

 The author of Static_assert is Dr. John Maddock.

 Boost.Type_traits

 Successful generic programming often requires making decisions based upon the properties of parameterizing types
or adjusting properties (for example, the cv-qualification[2]) of those types. Type_traits offers compile-time
information about types, such as whether a type is a pointer or a reference, and transformations that add or remove
fundamental properties of types. Type_traits has been accepted for the upcoming Library Technical Report.

[2] A type can be cv-unqualified (not const or volatile), const-qualified (const), volatile-qualified (declared volatile),
or volatile-const-qualified (both const and volatile); all of these versions of a type are distinct.

 The authors of Type_traits are Steve Cleary, Beman Dawes, Aleksey Gurtovoy, Howard Hinnant, Jesse Jones, Mat
Marcus, John Maddock, and Jeremy Siek, with contributions from many others.







Math and Numerics

 Boost.Integer

 This library provides useful functionality for integer types, such as compile-time constants for the minimum and
maximum values,[3] suitably sized types based on the number of required bits, static binary logarithm calculations, and
more. Also included are typedefs from the 1999 C Standard header <stdint.h>.

[3] std::numeric_limits only provide these as functions.

 The authors of Integer are Beman Dawes and Daryle Walker.

 Boost.Interval

 The Interval library helps when working with mathematical intervals. It provides arithmetic operators for the class
template interval. A common use case for working with intervals (besides the obvious case of computations including
intervals) is when computations provide inexact results; intervals make it possible to quantify the propagation of
rounding errors.

 The authors of Interval are Guillaume Melquiond, Sylvain Pion, and Hervé Brönniman, and the library is inspired by
previous work from Jens Maurer.

 Boost.Math

 Math is a collection of mathematics templates: quaternions and octonions (generalizations of complex numbers);
numerical functions such as acosh, asinh, and sinhc; functionality for calculating the greatest common divisor (GCD)
and least common multiple (LCM); and more.

 The authors of Math are Hubert Holin, Daryle Walker, and Eric Ford.

 Boost.Minmax

 Minmax simultaneously computes the minimum and maximum values, rather than requiring two comparisons when
using std::min and std::max. For a range of n elements, only 3n/2+1 comparisons are performed, rather than the 2n
required when using std::min_element and std::max_element.

 The author of Minmax is Hervé Brönniman.

 Boost.Numeric Conversion

 The Numeric Conversion library is a collection of tools used to perform safe and predictable conversions between
values of different numeric types. For example, there is a tool called numeric_cast (originally from Boost.Conversion),
which performs range-checked conversions and ensures that the value can be represented in the destination type;
otherwise, it throws an exception.

 The author of Numeric Conversion is Fernando Cacciola.

 Boost.Operators

 The Operators library provides implementations of related operators and concepts (LessThanComparable,
Arithmetic, and so on). When defining operators for a type, it is both tedious and error prone to add all of the
operators that should be defined. For example, when providing operator< (LessThanComparable), operator<=,
operator>, and operator>= should also be defined in most cases. Operators automatically declare and define all
relevant operators in terms of a minimum set of user-defined operators for a given type. There is detailed coverage of
the library in "Library 4: Operators 4."

 The authors of Operators are David Abrahams, Jeremy Siek, Aleksey Gurtovoy, Beman Dawes, and Daryle
Walker.

 Boost.Random

 This is a library for professional use of random numbers, including a number of generators and distributions that are
commonly used in a wide variety of domains such as simulation and security. Random has been accepted for the
upcoming Library Technical Report.

 The author of Random is Jens Maurer.

 Boost.Rational

 Integer types and floating-point types are built into the C++ language, and complex numbers are part of the C++
Standard Library, but what about rational numbers? Rational numbers avoid the problems with loss of precision in
floating-point types, so their use in tracking money, for example, is popular. Rational provides rational numbers built
atop any integral type, including user-defined types (where a type with unlimited precision is obviously the most
useful).

 The author of Rational is Paul Moore.

 Boost.uBLAS

 The uBLAS library provides basic linear algebra operations on vectors and matrices using mathematical notation, via
operator overloading, with efficient code generation (using expression templates).

 The authors of uBLAS are Joerg Walter and Mathias Koch.





Input/Output

 Boost.Assign

 Assign assists in assigning series of values into containers. It gives the user an easy way of assigning data, by means of
overloaded operator, (the comma operator) and operator()() (function call operator). Although being especially useful
for a prototyping-style of code, the functionality of the library is useful at other times too, due to the readable code
that results from using the library. It is also possible to use this library to create anonymous arrays on-the-fly using
list_of.

 The author of Assign is Thorsten Ottosen.

 Boost.Filesystem

 The Filesystem library offers portable manipulation of paths, directories, and files. The high-level abstractions enable
C++ programmers to write code similar to script-like operations that are often available in other programming
languages. For iterating thorough directories and files, convenient algorithms are provided. The difficult task of writing
code that is portable between platforms with different filesystems becomes feasible with the help of this library.

 The author of Filesystem is Beman Dawes.

 Boost.Format

 This library adds functionality for formatting arguments according to format strings, similar to printf, but with the
addition of type safety. One of the primary arguments against using printf and similar formatting facilities is that they
are inherently dangerous; there is no assurance that the types that are specified in the format string are matched by the
actual arguments. Besides eliminating the opportunity for such mismatches, Format also enables custom formatting of
user-defined types.[4]

[4] This is not possible with formatting functions using a variable number of arguments through use of ellipsis.

 The author of Format is Samuel Krempp.

 Boost.Io_state_savers

 The Io_state_savers library allows the state of IOStream objects to be saved, and later restored, to undo any
intervening state changes that may occur. Many manipulators permanently change the state of the stream on which
they operate, and it can be cumbersome at best and error prone at worst to manually reset the state. There are state
savers for control flags, precision, width, exception masks, locale for the stream, and more.

 The author of Io_state_savers is Daryle Walker.

 Boost.Serialization

 This library allows arbitrary C++ data structures to be saved to, and restored from, archives. An archive could be,
for example, a text file or XML file. Boost.Serialization is highly portable and offers a very mature set of features, such
as class versioning, serialization of common classes from the C++ Standard Library, serialization of shared data, and
more.

 The author of Serialization is Robert Ramey.





Miscellaneous

 Boost.Conversion

 The Conversion library contains functions that augment the existing cast operators (static_cast, const_cast, and
dynamic_cast). Conversion adds polymorphic_cast and polymorphic_downcast for safe polymorphic casts,
numeric_cast for safe conversions among numeric types, and lexical_cast for lexical conversions (for example,
between string and double). You can customize these casts to work optimally with your own typessomething that isn't
possible with the casts provided by the language. The library is covered in detail in "Library 2: Conversion."

 The authors of Conversion are Dave Abrahams and Kevlin Henney.

 Boost.Crc

 The Crc library provides calculations of cyclic redundancy codes (CRC), a commonly used checksum type. A CRC
is attached to a stream of data (from which it is computed), so the checksum can be used later to validate the data.
The library includes four sample CRC types: crc_16_type, crc_ccitt_type, crc_xmodem_type, and crc_32_type5.

 The author of Crc is Daryle Walker.

 Boost.Date_time

 The Date_time library provides extensive support for date and time types and operations upon them. Without library
support for dates and time, temporal programming tasks are complicated and error prone. Using Date_time, the
natural abstractions that one would expect are supported: days, weeks, months, durations (and intervals thereof),
addition and subtraction, and so on. The library addresses issues commonly omitted from other date/time libraries,
such as handling leap seconds and supporting high-resolution time sources. The library's design is extensible, allowing
for customized behavior or added functionality.

 The author of Date_time is Jeff Garland.

 5. CRC32 is used in PKZip, for example.

 Boost.Optional

 It is common for functions to indicate that the returned value is invalid, but often the returned type does not have a
state to indicate that it's not valid. Optional offers the class template optional, which is a type that semantically has an
additional state, one that is in effect when instances of optional are not containing instances of the wrapped object.

 The author of Optional is Fernando Cacciola.

 Boost.Pool

 The Pool library provides a pool memory allocatorthat is, a tool for managing dynamic memory in a single, large
allocation. Using memory pools is a good solution when allocating and deallocating many small objects, or when
memory control needs to be made more efficient.

 The author of Pool is Steve Cleary.

 Boost.Preprocessor

 Using the preprocessor is hard when you need to express common constructs such as recursion, it doesn't have
containers, doesn't provide means for iteration, and so forth. Nevertheless, the preprocessor is a powerful and
portable tool. The Preprocessor library provides abstractions on top of the preprocessor. These include lists, tuples,
and arrays, as well as algorithms that operate on the elements of those types. The library helps eliminate repetitive
code, thus reducing your effort, while making code more readable, expressive, and maintainable.

 The authors of Preprocessor are Vesa Karvonen and Paul Mensonides.

 Boost.Program_options

 The Program_options library retrieves program configuration options (name/value pairs), typically provided through
command-line arguments or configuration files. The library relieves the programmer from the task of parsing the data
by hand.

 The author of Program_options is Vladimir Prus.

 Boost.Python

 The Python library provides interoperability between C++ and Python.[6] It is used to expose C++ classes and
functions to Python and Python objects to C++. It is non-intrusive, which means that existing code typically requires
no changes to be exposed in Python.

[6] A popular programming language that you should get acquainted with.

 The author of Python is David Abrahams, with important contributions from Joel de Guzman and Ralf W.
Grosse-Kunstleve.

 Boost.Smart_ptr

 Smart pointers are vital parts of any programmer's toolbox. They are used everywhere to avoid resource leaks, share
resources, and manage object lifetimes correctly. There are a great number of good smart pointer libraries available,
some for free, others part of commercial packages. Smart_ptr is among the best, as proven by thousands of users and
the recommendations from leading experts in the field. Smart_ptr includes non-intrusive smart pointers for limiting
scope (scoped_ptr and scoped_array) and sharing resources (shared_ptr and shared_array), an observing smart
pointer to use with shared_ptr (weak_ptr), and an intrusive smart pointer class (intrusive_ptr). Smart_ptr's shared_ptr
(including the helper enable_shared_from_this) and weak_ptr have been accepted for the upcoming Library Technical
Report. For more about these really smart pointers, see "Library 1: Smart_ptr 1."

 The authors of Smart_ptr are Greg Colvin, Beman Dawes, Peter Dimov, and Darin Adler.

 Boost.Test

 The Test library provides a matched set of components for writing test programs, organizing tests into simple test
cases and test suites, and controlling their runtime execution. The Program Execution Monitor, a component in the
library, is also useful in some production (nontest) environments.

 The author of Test is Gennadiy Rozental (based upon earlier work by Beman Dawes).

 Boost.Thread

 Portable threading is tricky business, and there's no help to be had from C++ itself, as the language includes no
threading support, nor acknowledges it in any way. Of course, there's POSIX, available on many platforms, but
POSIX defines a C API. Thread is a library that offers portable threading through a number of threading primitives
and higher-level abstractions.

 The author of Thread is William Kempf.

 Boost.Timer

 The Timer library contains features for measuring time, and aims to be as consistent as possible across different
platforms. Although there are typically platform-specific APIs that allow programmers to measure time, there is no
portable way of attaining high-resolution timers. Boost.Timer addresses this problem by offering the best possible
resolution whilst remaining portable, in return for a certain degree of freedom of guaranteed accuracy and precision.

 The author of Timer is Beman Dawes.

 Boost.Tribool

 This library contains a tribool class, which implements three-state Boolean logic. A three-state Boolean type has an
additional state besides true and false: indeterminate (this state could also be named maybe; the name is configurable).

 The author of Tribool is Douglas Gregor.

 Boost.Utility

 Some useful stuff just doesn't find its way into a separate library, typically because it is not complicated or extensive
enough to warrant a separate library. That doesn't make it less useful; in fact, small utilities often have the most
widespread use. In Boost, such utilities are contained in the aptly named Utility library. Here, one finds
checked_delete, a function that ensures that a type is complete upon the point of deletion, the class noncopyable to
ensure that a class cannot be copied, and enable_if for total control of function overloading. There's a lot more to
Utility. See "Library 3: Utility" for the whole story.

 The authors of Utility are David Abrahams, Daryle Walker, Douglas Gregor, and others.

 Boost.Value_initialized

 The Value_initialized library helps construct and initialize objects in a generic way. In C++, a newly constructed
object can be either zero-initialized, default-constructed, or indeterminate, all depending upon the type of the object.
With Boost.Value_initialized, this inconsistency problem goes away.

 The author of Value_initialized is Fernando Cacciola.





Part I: General Libraries
 It is not obvious what a suitable name for this part of the book should be. With a structure of the book that
encompasses distinct domains (such as containers and higher-order programming), names are often palpable; except
for what's covered in this partthose little things that we use all of the time: smart pointers, conversion utilities, and so
on.

 You can't really begin with a division called Miscellaneous, or Ubiquitous, or Frequently Used Libraries. It's truethey
are all of these things, but it just doesn't convey their importance properly. Ergo, General Libraries, which I'm also
hoping will focus on their omnipresence.

 One thing that strikes me as odd is the way that we often regard these "simple" componentsutilities, if you likethat are
of so much use to us. They get a lot of attention in books and articles, but it is surprisingly common to underestimate
their value when it comes to selecting them (or creating them) for production code. Is it because we consider small
components uncomplicated? Do we will ingly sacrifice flexibility on the basis that it's easy to create another small
component just like it, but manually adapted to the exact problem at hand? If these are indeed the arguments, we are
thoroughly deceiving ourselves. Two million instances of smart pointers in a program make the smart pointers critical,
both in terms of efficiency and reliability. Twenty different implementations of common conversions in a program
affects the time it takes to code them, but more importantly it also impedes maintainability. Systems are built on layers
of abstraction, and the lower levels are often referred to as being comprised of data structures, algorithms, and
utilities. If you agree with that, consider the impact of a change, or a bug, or unwarranted inflexibility in any of these
small, insignificant, their-importance-forgotten utilities. Shiver. Utilities are vessels that traffic the veins of our
programs. They are the oil in our engines of logic and the glue between our barriers of insulation. Enough of crummy
analogies; let's just give them the credit they deserve, shall we? We will cover a wide variety of general libraries here,
including smart pointers, conversions (both type conversions and lexical conversions), regular expressions, operators,
static assertions, and more.
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How Does the Smart_ptr Library Improve Your Programs?


 Automatic lifetime management of objects with shared_ptr makes shared ownership of resources effective
and safe.



Safe observation of shared resources through weak_ptr avoids dangling pointers.


Scoped resources using scoped_ptr and scoped_array make the code easier to write and maintain, and helps
in writing exception-safe code.

 Smart pointers solve the problem of managing the lifetime of resources (typically dynamically allocated objects[1]).
Smart pointers come in different flavors. Most share one key featureautomatic resource management. This feature is
manifested in different ways, such as lifetime control over dynamically allocated objects, and acquisition and release of
resources (files, network connections). The Boost smart pointers primarily cover the first casethey store pointers to
dynamically allocated objects, and delete those objects at the right time. You might wonder why these smart pointers
don't do more. Couldn't they just as easily cover all types of resource management? Well, they could (and to some
extent they do), but not without a price. General solutions often imply increased complexity, and with the Boost smart
pointers, usability is of even higher priority than flexibility. However, through the support for custom deleters, Boost's
arguably smartest smart pointer (boost::shared_ptr) supports resources that need other destruction code than delete.
The five smart pointer types in Boost.Smart_ptr are tailor-made to fit the most common needs that arise in everyday
programming.

[1] Just about any type of resource can be handled by a generic smart pointer type.



When Do We Need Smart Pointers?
 There are three typical scenarios when smart pointers are appropriate:



 Shared ownership of resources


When writing exception-safe code


Avoiding common errors, such as resource leaks

 Shared ownership is the case when two or more objects must use a third object. How (or rather when) should that
third object be deallocated? To be sure that the timing of deallocation is right, every object referring to the shared
resource would have to know about each other to be able to correctly time the release of that resource. That coupling
is not viable from a design or a maintenance point of view. The better approach is for the owners to delegate
responsibility for lifetime management to a smart pointer. When no more shared owners exist, the smart pointer can
safely free the resource.

 Exception safety at its simplest means not leaking resources and preserving program invariants when an exception is
thrown. When an object is dynamically allocated, it won't be deleted when an exception is thrown. As the stack
unwinds and the pointer goes out of scope, the resource is possibly lost until the program is terminated (and even
resource reclamation upon termination isn't guaranteed by the language). Not only can the program run out of
resources due to memory leaks, but the program state can easily become corrupt. Smart pointers can automatically
release those resources for you, even in the face of exceptions.

 Avoiding common errors. Forgetting to call delete is the oldest mistake in the book (at least in this book). A smart
pointer doesn't care about the control paths in a program; it only cares about deleting a pointed-to object at the end
of its lifetime. Using a smart pointer eliminates your need to keep track of when to delete objects. Also, smart pointers
can hide the deallocation details, so that clients don't need to know whether to call delete, some special cleanup
function, or not delete the resource at all.

 Safe and efficient smart pointers are vital weapons in the programmer's arsenal. Although the C++ Standard Library
offers std::auto_ptr, that's not nearly enough to fulfill our smart pointer needs. For example, auto_ptrs cannot be used
as elements of STL containers. The Boost smart pointer classes fill a gap currently left open by the Standard.

 The main focus of this chapter is on scoped_ptr, shared_ptr, intrusive_ptr, and weak_ptr. Although the
complementary scoped_array and shared_array are sometimes useful, they are not used nearly as frequently, and they
are so similar to those covered that it would be too repetitive to cover them at the same level of detail.



How Does Smart_ptr Fit with the Standard Library?
 The Smart_ptr library has been proposed for inclusion in the Standard Library, and there are primarily three reasons
for this:



 The Standard Library currently offers only auto_ptr, which is but one type of smart pointer, covering only
one part of the smart pointer spectrum. shared_ptr offers different, arguably even more important,
functionality.



The Boost smart pointers are specifically designed to work well with, and be a natural extension to, the
Standard Library. For example, before shared_ptr, there were no standard smart pointers that could be used
as elements in containers.



Real-world programmers have proven these smart pointer classes through heavy use in their own programs
for a long time.

 The preceding reasons make the Smart_ptr library a very useful addition to the C++ Standard Library.
Boost.Smart_ptr's shared_ptr (and the accompanying helper enable_shared_from_this) and weak_ptr have been
accepted for the upcoming Library Technical Report.





scoped_ptr

 Header: "boost/scoped_ptr.hpp"

 boost::scoped_ptr is used to ensure the proper deletion of a dynamically allocated object. scoped_ptr has similar
characteristics to std::auto_ptr, with the important difference that it doesn't transfer ownership the way an auto_ptr
does. In fact, a scoped_ptr cannot be copied or assigned at all! A scoped_ptr assumes ownership of the resource to
which it points, and never accidentally surrenders that ownership. This property of scoped_ptr improves
expressiveness in our code, as we can select the smart pointer (scoped_ptr or auto_ptr) that best fits our needs.

 When deciding whether to use std::auto_ptr or boost::scoped_ptr, consider whether transfer of ownership is a
desirable property of the smart pointer. If it isn't, use scoped_ptr. It is a lightweight smart pointer; using it doesn't
make your program larger or run slower. It only makes your code safer and more maintainable.

 Next is the synopsis for scoped_ptr, followed by a short description of the class members:

namespace boost {

  template<typename T> class scoped_ptr : noncopyable {

  public:

    explicit scoped_ptr(T* p = 0); 

    ~scoped_ptr(); 

    void reset(T* p = 0); 

    T& operator*() const; 

    T* operator->() const; 

    T* get() const; 

    void swap(scoped_ptr& b); 

  };

  template<typename T> 

    void swap(scoped_ptr<T> & a, scoped_ptr<T> & b); 

}

Members

explicit scoped_ptr(T* p=0)

The constructor stores a copy of p. Note that p must be allocated using operator new, or be null. There is no
requirement on T to be a complete type at the time of construction. This is useful when the pointer p is the result of
calling some allocation function rather than calling new directly: Because the type needn't be complete, a forward
declaration of the type T is enough. This constructor never throws.

~scoped_ptr()

Deletes the pointee. The type T must be a complete type when it is destroyed. If the scoped_ptr holds no resource at
the time of its destruction, this does nothing. The destructor never throws.

void reset(T* p=0);

Resetting a scoped_ptr deletes the stored pointer it already owns, if any, and then saves p. Often, the lifetime
management of a resource is completely left to be handled by the scoped_ptr, but on rare occasions the resource
needs to be freed prior to the scoped_ptr's destruction, or another resource needs to be handled by the scoped_ptr
instead of the original. In those cases, reset is useful, but use it sparingly. (Excessive use probably indicates a design
problem.) This function never throws.

T& operator*() const;

Returns a reference to the object pointed to by the stored pointer. As there are no null references, dereferencing a
scoped_ptr that holds a null pointer results in undefined behavior. If in doubt as to whether the contained pointer is
valid, use the function get instead of dereferencing. This operator never throws.

T* operator->() const;

Returns the stored pointer. It is undefined behavior to invoke this operator if the stored pointer is null. Use the
member function get if there's uncertainty as to whether the pointer is null. This operator never throws.

T* get() const;

Returns the stored pointer. get should be used with caution, because of the issues of dealing with raw pointers.
However, get makes it possible to explicitly test whether the stored pointer is null. The function never throws. get is
typically used when calling functions that require a raw pointer.

operator unspecified_bool_type() const

Returns whether the scoped_ptr is non-null. The type of the returned value is unspecified, but it can be used in
Boolean contexts. Rather than using get to test the validity of the scoped_ptr, prefer using this conversion function to
test it in an if-statement.

void swap(scoped_ptr& b)

Exchanges the contents of two scoped_ptrs. This function never throws.

 Free Functions

template<typename T> void swap(scoped_ptr<T>& a,scoped_ptr<T>& b)

This function offers the preferred means by which to exchange the contents of two scoped pointers. It is preferable
because swap(scoped1,scoped2) can be applied generically (in templated code) to many pointer types, including raw
pointers and third-party smart pointers.[2] scoped1.swap(scoped2) only works on smart pointers, not on raw
pointers, and only on those that define the operation. 

[2] You can create your own free swap function for third-party smart pointers that weren't smart enough to provide
their own.

 Usage

 A scoped_ptr is used like an ordinary pointer with a few important differences; the most important are that you don't
have to remember to invoke delete on the pointer and that copying is disallowed. The typical operators for pointer
operations (operator* and operator->) are overloaded to provide the same syntactic access as that for a raw pointer.
Using scoped_ptrs are just as fast as using raw pointers, and there's no size overhead, so use them extensively. To
use boost::scoped_ptr, include the header "boost/scoped_ptr.hpp". When declaring a scoped_ptr, the type of the
pointee is the parameter to the class template. For example, here's a scoped_ptr that wraps a pointer to std::string:

boost::scoped_ptr<std::string> p(new std::string("Hello"));

When a scoped_ptr is destroyed, it calls delete on the pointer that it owns.

 No Need to Manually Delete

 Let's take a look at a program that uses a scoped_ptr to manage a pointer to std::string. Note how there's no call to
delete, as the scoped_ptr is an automatic variable and is therefore destroyed as it goes out of scope.

#include "boost/scoped_ptr.hpp"

#include <string>

#include <iostream>

int main() {

  {

  boost::scoped_ptr<std::string> 

  p(new std::string("Use scoped_ptr often."));

  // Print the value of the string

  if (p)

    std::cout << *p << '\n';

  // Get the size of the string

  size_t i=p->size();

  // Assign a new value to the string

  *p="Acts just like a pointer";

  } // p is destroyed here, and deletes the std::string 

}

A couple of things are worth noting in the preceding code. First, a scoped_ptr can be tested for validity, just like an
ordinary pointer, because it provides an implicit conversion to a type that can be used in Boolean expressions.
Second, calling member functions on the pointee works like for raw pointers, because of the overloaded operator->.
Third, dereferencing scoped_ptr also works exactly like for raw pointers, thanks to the overloaded operator*. These
properties are what makes usage of scoped_ptrand other smart pointersso intuitive, because the differences from raw
pointers are mostly related to the lifetime management semantics, not syntax. 

Almost Like auto_ptr

 The major difference between scoped_ptr and auto_ptr is in the treatment of ownership. auto_ptr willingly transfers
ownershipaway from the source auto_ptrwhen copied, whereas a scoped_ptr cannot be copied. Take a look at the
following program, which shows scoped_ptr and auto_ptr side by side to clearly show how they differ.

void scoped_vs_auto() {

  using boost::scoped_ptr;

  using std::auto_ptr;

  scoped_ptr<std::string> p_scoped(new std::string("Hello"));

  auto_ptr<std::string> p_auto(new std::string("Hello"));

  p_scoped->size();

  p_auto->size();

  scoped_ptr<std::string> p_another_scoped=p_scoped;

  auto_ptr<std::string> p_another_auto=p_auto;

  p_another_auto->size();

  (*p_auto).size();

}

This example doesn't compile because a scoped_ptr cannot be copy constructed or assigned to. The auto_ptr can be
both copy constructed and copy assigned, but that also means that it transfers ownership from p_auto to
p_another_auto, leaving p_auto with a null pointer after the assignment. This can lead to unpleasant surprises, such as
when trying to store auto_ptrs in a container.[3] If we remove the assignment to p_another_scoped, the program
compiles cleanly, but it results in undefined behavior at runtime, because of dereferencing the null pointer in p_auto
(*p_auto).

[3] Never, ever, store auto_ptrs in Standard Library containers. Typically, you'll get a compiler error if you try; if you
don't, you're in trouble.

 Because scoped_ptr::get returns a raw pointer, it is possible to do evil things to a scoped_ptr, and there are two
things that you'll especially want to avoid. First, do not delete the stored pointer. It is deleted once again when the
scoped_ptr is destroyed. Second, do not store the raw pointer in another scoped_ptr (or any smart pointer for that
matter). Bad things happen when the pointer is deleted twice, once by each scoped_ptr. Simply put, minimize the use
of get, unless you are dealing with legacy code that requires you to pass the raw pointer!

 scoped_ptr and the Pimpl Idiom

 scoped_ptr is ideal to use in many situations where one has previously used raw pointers or auto_ptrs, such as when
implementing the pimpl idiom.[4] The idea behind the pimpl idiom is to insulate clients from all knowledge about the
private parts of a class. Because clients depend on the header file of a class, any changes to the header will affect
clients, even if they are made to the private or protected sections. The pimpl idiom hides those details by putting
private data and functions in a separate type defined in the implementation file and then forward declaring the type in
the header file and storing a pointer to it. The constructor of the class allocates the pimpl type, and the destructor
deallocates it. This removes the implementation dependencies from the header file. Let's construct a class that
implements the pimpl idiom and then apply smart pointers to make it safer.

[4] This is also known as the Cheshire Cat idiom. See www.gotw.ca/gotw/024.htm and Exceptional C++ for more
on the pimpl idiom.

// pimpl_sample.hpp

#if !defined (PIMPL_SAMPLE)

#define PIMPL_SAMPLE

struct impl;

class pimpl_sample {

  impl* pimpl_;

public:

  pimpl_sample();

  ~pimpl_sample();

  void do_something();

};

#endif

That's the interface for the class pimpl_sample. The struct impl is forward declared, and it holds all private members
and functions in the implementation file. The effect is that clients are fully insulated from the internal details of the
pimpl_sample class.

// pimpl_sample.cpp 

#include "pimpl_sample.hpp"

#include <string>

#include <iostream>

struct pimpl_sample::impl {

  void do_something_() {

    std::cout << s_ << "\n";

  }

  std::string s_;

};

pimpl_sample::pimpl_sample()

  : pimpl_(new impl) {

  pimpl_->s_ = "This is the pimpl idiom";

}

pimpl_sample::~pimpl_sample() {

  delete pimpl_;

}

void pimpl_sample::do_something() {

  pimpl_->do_something_();

}

At first glance, this may look perfectly fine, but it's not. The implementation is not exception safe! The reason is that
the pimpl_sample constructor may throw an exception after the pimpl has been constructed. Throwing an exception in
the constructor implies that the object being constructed never fully existed, so its destructor isn't invoked when the
stack is unwound. This state of affairs means that the memory allocated and referenced by the impl_ pointer will leak.
However, there's an easy cure for this; scoped_ptr to the rescue!

class pimpl_sample {

  struct impl;

  boost::scoped_ptr<impl> pimpl_;

  ...

};

By letting a scoped_ptr handle the lifetime management of the hidden impl class, and after removing the deletion of the
impl from the destructor (it's no longer needed, thanks to scoped_ptr), we're done. However, you must still remember
to define the destructor manually; the reason is that at the time the compiler generates an implicit destructor, the type
impl is incomplete, so its destructor isn't called. If you were to use auto_ptr to store the impl, you could still compile
code containing such errors, but using scoped_ptr, you'll receive an error.

 Note that when using scoped_ptr as a class member, you need to manually define the copy constructor and copy
assignment operator. The reason for this is that a scoped_ptr cannot be copied, and therefore the class that
aggregates it also becomes noncopyable.

 Finally, it's worth noting that if the pimpl instance can be safely shared between instances of the enclosing class (here,
pimpl_sample), then boost::shared_ptr is the right choice for handling the pimpl's lifetime. The advantages of using
shared_ptr rather than scoped_ptr includes being relieved from manually defining the copy constructor and copy
assignment operator, and to define an empty destructorshared_ptr is designed to work correctly even with incomplete
types.

 scoped_ptr Is Not the Same As const auto_ptr

 The observant reader has probably already noted that an auto_ptr can indeed be made to work almost like a
scoped_ptr, by declaring the auto_ptr const:

const auto_ptr<A> no_transfer_of_ownership(new A);

It's close, but not quite the same. The big difference is that a scoped_ptr can be reset, effectively deleting and
replacing the pointee when needed. That's not possible with a const auto_ptr. Another difference, albeit smaller, is the
difference in names: Although const auto_ptr essentially makes the same statement as scoped_ptr, it does so more
verbosely and less obviously. After you have scoped_ptr in your vocabulary, you should use it because it clearly
declares your intentions. If you want to say that a resource is scoped, and that there's no way you'll relinquish
ownership of it, spell it boost::scoped_ptr.

 Summary

 Raw pointers complicate writing exception-safe and error-free code. Automatically limiting the lifetime of dynamically
allocated objects to a certain scope via smart pointers is a powerful way to address those issues and also increase the
readability, maintainability, and quality of your code. scoped_ptr unambiguously states that its pointee cannot be
shared or transferred. As you've seen, std::auto_ptr can "steal" the pointee from another auto_ptr, even inadvertently,
which is considered to be auto_ptr's biggest liability. That liability is what makes scoped_ptr such an excellent
complement to auto_ptr. When a dynamically allocated object is passed to a scoped_ptr, it assumes sole ownership
of that object. Because a scoped_ptr is almost always allocated as an automatic variable or data member, it is
properly destroyed when it leaves scope, and thus frees its managed memory, when execution flow leaves a scope
due to a return statement or a thrown exception. 

Use scoped_ptr when


 A pointer is used in a scope where an exception may be thrown


There are several control paths in a function


The lifetime of a dynamically allocated object can be limited to a specific scope


Exception safety is important (always!)

http://www.gotw.ca/gotw/024.htm




scoped_array

 Header: "boost/scoped_array.hpp"

 The need for dynamically allocated arrays is usually best handled by std:: vector, but there are two cases when it
makes good sense to use arrays: for optimization, as there is some overhead in size and speed for vector; and for
expression of intent, making it clear that bounds are fixed.[5] Dynamically allocated arrays are exposed to the same
dangers as ordinary pointers, with the added (and all too common) mistake of invoking the delete operator instead of
the delete[] operator. I've seen that mistake in places one could hardly imagine, such as in widely used, proprietary
container classes! scoped_array does for arrays what scoped_ptr does for pointers to single objects: It deletes the
memory. The difference is that scoped_array does it using the delete[] operator. 

[5] These are not clear-cut advantages. Indeed, it is usually best to use std::vector until performance measurements
suggest the benefits of scoped_array are warranted.

 The reason that scoped_array is a separate class rather than being a specialization of scoped_ptr is because it is not
possible to distinguish between pointers to single objects and pointers to arrays using metaprogramming techniques.
Despite efforts to make that distinction, no one has found a reliable way to do that because arrays decay so easily into
pointers that carry no type information indicating that they point to arrays. As a result, the onus is on you to use
scoped_array rather than scoped_ptr, just as you must otherwise choose to use the delete[] operator rather than the
delete operator. The benefits are that scoped_array handles deletion for you, and that scoped_array conveys that we
are dealing with an array, whereas a raw pointer doesn't.

 scoped_array is very similar to scoped_ptr, with the differences that it provides operator[] to mimic a raw array.

 scoped_array is a superior alternative to ordinary, dynamically allocated arrays. It handles lifetime management of
dynamically allocated arrays, similar to how scoped_ptr manages lifetime for pointers to objects. Remember though,
in most cases, std::vector is preferable as it is more flexible and powerful. When you need to clearly state that the size
of the array is constant, use scoped_array rather than std::vector.





shared_ptr

 Header: "boost/shared_ptr.hpp"

 Almost all non-trivial programs need some form of reference-counted smart pointers. These smart pointers eliminate
the need to write complicated logic to control the lifetime of objects shared among two or more other objects. When
the reference count drops to zero, no more objects are interested in the shared object, and so it is deleted
automatically. Reference-counted smart pointers can be categorized as intrusive or non-intrusive. The former expects
the classes that it manages to provide certain functionality or data members with which to manage the reference count.
That means designing classes with the foresight to work with an intrusive, reference-counted smart pointer class, or
retrofitting. Non-intrusive, reference-counted smart pointers don't require anything of the types they manage.
Reference-counted smart pointers assume ownership of the memory associated with their stored pointers. The
problem with sharing objects without the help of smart pointers is that someone must, eventually, delete the shared
memory. Who, and when? Without reference-counted smart pointers, one must impose lifetime management
externally to the memory being managed, which typically means stronger dependencies among the collective owners.
That, in turn, impedes reusability and adds complexity.

 The class to be managed may have properties that make it a good candidate for use with a reference-counted smart
pointer. For example, the fact that it is expensive to copy, or that part of its representation needs to be shared
between instances, make shared ownership desirable. There are also situations in which there is no explicit owner of a
shared resource. Using reference-counted smart pointers makes possible sharing ownership among the objects that
need access to the shared resource. Reference-counted smart pointers also make it possible to store pointers to
objects in Standard Library containers without risk of leaks, especially in the face of exceptions or when removing
elements from the containers. When you store pointers in containers, you can take advantage of polymorphism,
improved efficiency (if copying is expensive), and the ability to store the same objects in multiple, associated
containers for specialized lookups.

 After you've determined that the use of a reference-counted smart pointer is warranted, how do you choose whether
to use an intrusive or non-intrusive design? Non-intrusive smart pointers are almost always the better choice on
account of their general applicability, lack of impact on existing code, and flexibility. You can use non-intrusive,
reference-counted smart pointers with classes that you cannot or don't wish to change. The usual way to adapt a class
to work with an intrusive, reference-counted smart pointer is to derive from a reference-counted base class. That
change may be more expensive than appears at first glance. At the very least, it adds dependencies and decreases
reusability.[6] It also typically increases object size, which may limit usability in some contexts.[7]

[6] Consider the need to use more than one reference-counted smart pointer class with the same type. If both are
intrusive designs, the different base classes may not be compatible and will certainly be wasteful. If only one is an
intrusive design, the overhead of the base class is for naught when using the non-intrusive smart pointer.

[7] On the other hand, non-intrusive smart pointers require additional storage for the actual smart pointer.

 A shared_ptr can be constructed from a raw pointer, another shared_ptr, a std::auto_ptr, or a boost::weak_ptr. It is
also possible to pass a second argument to the constructor of shared_ptr, known as a deleter. The deleter is later
called upon to handle deletion of the shared resource. This is useful for resource management where the resource is
not allocated with new and destroyed with delete (we shall see examples of creating custom deleters later). After the
shared_ptr has been constructed, it is used just like an ordinary pointer, with the obvious exception that it must not be
explicitly deleted.

 This is a partial synopsis for shared_ptr; the most important members and accompanying free functions are shown
and subsequently briefly discussed.

namespace boost {

  template<typename T> class shared_ptr {

  public:

    template <class Y> explicit shared_ptr(Y* p);

    template <class Y,class D> shared_ptr(Y* p,D d);

    ~shared_ptr();

    shared_ptr(const shared_ptr & r);

    template <class Y> explicit 

      shared_ptr(const weak_ptr<Y>& r);

    template <class Y> explicit shared_ptr(std::auto_ptr<Y>& r);

    shared_ptr& operator=(const shared_ptr& r);

    void reset(); 

    T& operator*() const;

    T* operator->() const;

    T* get() const;

    bool unique() const;

    long use_count() const;

    operator unspecified-bool-type() const;

    void swap(shared_ptr<T>& b);

  };

  template <class T,class U>

    shared_ptr<T> static_pointer_cast(const shared_ptr<U>& r);

}

Members

template <class Y> explicit shared_ptr(Y* p);

This constructor takes ownership of the supplied pointer p. The argument p must be a valid pointer to Y. The
reference count is set to 1 after construction. The only exception that may be thrown from the constructor is
std::bad_alloc (which can only happen in the unlikely event that the reference counter cannot be allocated from the
free store). 

template <class Y,class D> shared_ptr(Y* p,D d);

This constructor takes two arguments. The first is the resource that the shared_ptr should take ownership of, and the
second is an object that is responsible for releasing that resource when the shared_ptr is destroyed. The stored
resource is passed to the object as d(p). Thus, valid values of p depend upon d. If the reference counter cannot be
allocated, shared_ptr tHRows an exception of type std::bad_alloc.

shared_ptr(const shared_ptr& r);

The stored resource in r is shared by the constructed shared_ptr, and the reference count is increased by one. This
copy constructor never throws.

template <class Y> explicit shared_ptr(const weak_ptr<Y>& r);

Constructs a shared_ptr from a weak_ptr (covered later in this chapter). This enables thread-safe usage of weak_ptr,
because the reference count of the shared resource pointed to by the weak_ptr argument will be incremented
(weak_ptrs do not affect the reference count of shared resources). If the weak_ptr is empty (r.use_count()==0),
shared_ptr tHRows an exception of type bad_weak_ptr.

template <typename Y> shared_ptr(std::auto_ptr<Y>& r);

The construction from an auto_ptr takes ownership of the pointer stored in r by storing a copy of the pointer and
calling release on the auto_ptr. The reference count after construction is 1. r is, of course, emptied. Throws
std::bad_alloc if the reference counter cannot be allocated.

~shared_ptr();

The shared_ptr destructor decreases the reference count by one. If the count is then zero, the stored pointer is
deleted. Deleting the pointer is done through a call to operator delete or, if a custom deleter object was supplied to
handle destruction, that object will be called with the stored pointer as its sole argument. The destructor never throws.

shared_ptr& operator=(const shared_ptr& r);  

The copy assignment operator shares the resource in r and stops sharing the resource currently being shared. The
copy assignment operator never throws.

void reset();

The reset function is used to stop sharing ownership of the stored pointer. The reference count for the shared resource
is decremented.

T& operator*() const;

This operator returns a reference to the object pointed to by the stored pointer. If the pointer is null, invoking
operator* results in undefined behavior. This operator never throws.

T* operator->() const;

The operator returns the stored pointer. This, together with operator* is what makes the smart pointer look like an
ordinary pointer. This operator never throws.

T* get() const;

The get function is the preferred way of retrieving the stored pointer when it might be null (in which case operator*
and operator-> leads to undefined behavior). Note that it is also possible to test whether a shared_ptr contains a valid
pointer by using the implicit Boolean conversion. This function never throws.

bool unique() const;

This function returns true if the shared_ptr is the sole owner of the stored pointer; otherwise, it returns false. unique
never throws.

long use_count() const;

The use_count function returns the reference count for the pointer. It is especially useful for debugging purposes,
because it can be used to get snapshots of the reference count at critical points of program execution. Use it sparingly.
For some possible implementations of the shared_ptr interface, calculating the reference count may be expensive or
even impossible. The function never throws.

operator unspecified-bool-type() const;

This implicit conversion to a type, unspecified-bool-type, makes it possible to test a smart pointer in Boolean
contexts. The value is TRue if the shared_ptr is currently storing a valid pointer; otherwise, it is false. Note that the
type that this conversion function returns is not specified. Using bool as the return type allows for some nonsensical
operations, so typically, an implementation uses the safe bool idiom,[8] which is a nifty way of ensuring that only
applicable Boolean tests can be used. The function never throws.

[8] Invented by Peter Dimov.

void swap(shared_ptr<T>& b);

It is sometimes convenient to swap the contents of two shared_ptrs. The swap function exchanges the stored pointers
(and their reference counts). This function never throws.

 Free Functions

template <typename T,typename U>

  shared_ptr<T> static_pointer_cast(const shared_ptr<U>& r); 

To perform a static_cast on a pointer stored in a shared_ptr, we could retrieve the pointer and then cast it, but we
couldn't store it in another shared_ptr; the new shared_ptr would think it was the first to manage the resource the
pointer refers to. This is remedied by static_pointer_cast. Using this function ensures that the reference count for the
pointee remains correct. static_pointer_cast never throws exceptions.

 Usage

 The primary problem solved by shared_ptr is knowing the correct time to delete a resource that is shared by more
than one client. Here's a straightforward example, where two classes, A and B, are sharing an instance of int. To start
using boost::shared_ptr, you need to include "boost/shared_ptr.hpp".

#include "boost/shared_ptr.hpp"

#include <cassert>

class A {

  boost::shared_ptr<int> no_;

public:

  A(boost::shared_ptr<int> no) : no_(no) {}

  void value(int i) {

    *no_=i;

  }

};

class B {

  boost::shared_ptr<int> no_;

public:

  B(boost::shared_ptr<int> no) : no_(no) {}

  int value() const {

    return *no_;

  }

};

int main() {

    boost::shared_ptr<int> temp(new int(14));

    A a(temp);

    B b(temp);

    a.value(28);

    assert(b.value()==28);

}

The classes A and B both store a shared_ptr<int>. When creating the instances of A and B, the shared_ptr temp is
passed to their constructors. This means that all three shared_ptrsa, b, and tempare now referring to the same
instance of an int. Had we used pointers to achieve such sharing of an int, A and B would have had a hard time
figuring out when (and if!) it should be deleted. In the example, the reference count is 3 until the end of main, where all
of the shared_ptrs go out of scope, decreasing the count until it reaches 0, allowing the last of the smart pointers to
delete the shared int.

 The Pimpl Idiom Revisited

 The pimpl idiom was previously presented in conjunction with scoped_ptr, which works well as a means of storing
the dynamically allocated instance of the pimpl, if copying is not permitted for the class using the idiom. That is not
appropriate for all classes that would benefit from using the pimpl idiom (note that scoped_ptr can still be used, but
copy construction and assignment need to be implemented by hand). For those classes that can handle shared
implementation details, shared_ptr comes into play. When ownership of the pimpl is passed to a shared_ptr, the
copying and assignment operators come for free. You'll recall that when using scoped_ptr to handle the lifetime of the
pimpl class, copying of the outer class is not allowed, because scoped_ptrs are not copyable. This means that to
support copying and assignment in such classes, a copy constructor and assignment operator must be defined
manually. When using shared_ptr to handle the lifetime of the pimpl, a user-defined copy constructor may not even be
needed. Note that the pimpl instance will be shared among the objects of the class, so if there is state that only applies
to one instance of the class, a handcrafted copy constructor is still required. The solution is very similar to what we
saw for scoped_ptr; just make it a shared_ptr, instead.

 shared_ptr and Standard Library Containers

 Storing objects directly in a container is sometimes troublesome. Storing objects by value means clients get copies of
the container elements, which may be a performance problem for types where copying is an expensive operation.
Furthermore, some containers, notably std::vector, copy elements when resizing as you add more elements, further
adding to the performance problems. Finally, value semantics means no polymorphic behavior. If you need to store
polymorphic objects in a container and you don't want to slice them, you must use pointers. If you use raw pointers,
the complexity of maintaining the integrity of the elements skyrockets. That is, you must know whether clients of the
container still refer to elements of the container when erasing them from the container, never mind coordinating
multiple clients using the same element. Such problems are solved handily by shared_ptr.

 The following example shows how to store shared pointers in a Standard Library container. 

#include "boost/shared_ptr.hpp"

#include <vector>

#include <iostream>

class A {

public:

  virtual void sing()=0;

protected:

  virtual ~A() {};

};

class B : public A {

public:

  virtual void sing() {

    std::cout << "Do re mi fa so la";

  }

};

boost::shared_ptr<A> createA() {

  boost::shared_ptr<A> p(new B());

  return p;

}

int main() {

  typedef std::vector<boost::shared_ptr<A> > container_type;

  typedef container_type::iterator iterator;

  container_type container;

  for (int i=0;i<10;++i) {

    container.push_back(createA());

  }

  std::cout << "The choir is gathered: \n";

  iterator end=container.end();

  for (iterator it=container.begin();it!=end;++it) {

    (*it)->sing();

  }

}

The two classes, A and B, contain a single virtual member function sing. B derives publicly from A, and as you can
see, the factory function createA returns a dynamically allocated instance of B wrapped in a shared_ptr<A>. In main,
a std::vector containing shared_ptr<A> is filled with 10 elements, and finally sing is invoked on each element. Had we
been using raw pointers as elements, the objects would need to be manually deleted. In the example, this deletion is
automatic, because the reference count of each shared_ptr in the container is 1 as long as the vector is kept alive;
when the vector is destroyed, the reference counters all go down to zero, and the objects are deleted. It is interesting
to note that even if the destructor of A had not been declared virtual, shared_ptr would have correctly invoked the
destructor of B! 

A powerful technique is demonstrated in the example, and it involves the protected destructor in A. Because the
function createA returns a shared_ptr<A>, it won't be possible to invoke delete on the pointer returned by
shared_ptr:: get. This means that if the pointer in the shared_ptr is retrievedperhaps in order to pass it to a function
expecting a raw pointerit won't be possible to accidentally delete it, which would wreak havoc. So, how is it that the
shared_ptr is allowed to delete the object? It's because of the actual type of the pointer, which is B; B's destructor is
not protected. This is a very useful way of adding extra safety to objects kept in shared_ptrs.

 shared_ptr and Other Resources

 Sometimes, you'll find yourself in need for using shared_ptr with a type that requires other cleanup than a simple
delete. There is support for such cases in shared_ptr tHRough what is called custom deleters. Resource handles, such
as FILE*, or operating systemspecific handles, are typically released through an operation such as fclose. To use a
FILE* in a shared_ptr, we define a class that is responsible for deallocating the resource.

class FileCloser {

public:

   void operator()(FILE* file) {

    std::cout << "The FileCloser has been called with a FILE*, "

      "which will now be closed.\n";

    if (file!=0) 

      fclose(file);

  }

};

This is the function object that we'll use to make sure that fclose is called when the resource should be released.
Here's an example program that utilizes our FileCloser class.

int main() {

  std::cout << 

    "shared_ptr example with a custom deallocator.\n"; 

  {

    FILE* f=fopen("test.txt","r");

    if (f==0) {

      std::cout << "Unable to open file\n";

      throw "Unable to open file";

    }

    boost::shared_ptr<FILE> 

      my_shared_file(f, FileCloser());

    // Position the file pointer

    fseek(my_shared_file.get(),42,SEEK_SET);

  }

  std::cout << "By now, the FILE has been closed!\n";

}

Note that to get the resource, we need to use the unpronounceable &* idiom, get, or get_pointer on the shared_ptr.
(I clearly caution against using &*. The choice between the other two is less clear.) The example could be made even
simplerif we don't need to do more than call a single argument function when deallocating, there's really no need to
create a custom deleter class at all. The example could be rewritten as follows:

{

  FILE* f=fopen("test.txt","r");

  if (f==0) {

    std::cout << "Unable to open file\n";

    throw file_exception();

  }

  boost::shared_ptr<FILE> my_shared_file(f,&fclose);

  // Position the file pointer

  fseek(&*my_shared_file,42,SEEK_SET); 

}

std::cout << "By now, the FILE* has been closed!\n";

Custom deleters are extremely useful for handling resources that need a special release procedure. Because the
deleter is not part of the shared_ptr type, clients need not know anything about the resource that the smart pointer
owns (besides how to use it, of course!). For example, a pool of objects can be used, and the custom deleter would
simply return the object to the pool. Or, a singleton object could have a deleter that does nothing.

 Security Through Custom Deleters

 We've already seen how using a protected destructor in a base class helps add safety to classes used with
shared_ptr. Another way of achieving the same level of safety is to declare the destructor protected (or private) and
use a custom deleter to take care of destroying the object. This custom deleter must be made a friend of the class that
it is to delete for this to work. A nice way to encapsulate this deleter is to implement it as a private nested class, like
the following example demonstrates:

#include "boost/shared_ptr.hpp"

#include <iostream>

class A {

  class deleter {

    public:

      void operator()(A* p) {

        delete p;

      }

  };

  friend class deleter;

public:

  virtual void sing() {

    std::cout << "Lalalalalalalalalalala";

  }

  static boost::shared_ptr<A> createA() {

    boost::shared_ptr<A> p(new A(),A::deleter());

    return p;

  }

protected:

  virtual ~A() {};

};

int main() {

  boost::shared_ptr<A> p=A::createA();

}

Note that we cannot use a free function as a factory for shared_ptr<A> here, because the nested deleter class is
private to A. Using this scheme, it isn't possible for users to create As on the stack, and it isn't possible to call delete
using a pointer to A.

 Creating a shared_ptr from this

 Sometimes, it is necessary to obtain a shared_ptr from thisthat is, you are making the assumption that your class is
being managed by a shared_ptr, and you need a way to convert "yourself" into that shared_ptr. Sounds like a mission
impossible? Well, the solution comes from a smart pointer component that we've yet to discussboost::weak_ptr. A
weak_ptr is an observer of shared_ptrs; it just silently sits and watches them, but does not affect the reference count.
By storing a weak_ptr to this as a member of the class, it's possible to retrieve a shared_ptr to this on demand. To
relieve you from the tedium of having to write the code for storing a weak_ptr to this and subsequently obtain a
shared_ptr from that weak_ptr, Boost.Smart_ptr provides a helper class for this task, called
enable_shared_from_this. Simply have your class derive publicly from enable_shared_from_this, and then use the
function shared_from_this whenever you need to access the shared_ptr that is managing this. Here's an example that
demonstrates how enable_shared_from_this is used:

#include "boost/shared_ptr.hpp"

#include "boost/enable_shared_from_this.hpp"

class A;

void do_stuff(boost::shared_ptr<A> p) {

  ...

}

class A : public boost::enable_shared_from_this<A> {

public:

  void call_do_stuff() {

    do_stuff(shared_from_this());

  }

};

int main() {

  boost::shared_ptr<A> p(new A());

  p->call_do_stuff();

}

The example also demonstrates a case where you need the shared_ptr that is managing this. Class A has a member
function call_do_stuff that needs to call the free function do_stuff, which expects an argument of type boost::
shared_ptr<A>. Now, in A::call_do_stuff, this is simply a pointer to A, but because A derives from
enable_shared_from_this, calling shared_from_this returns the shared_ptr that we're seeking. In shared_from_this,
which is a member of enable_shared_from_this, the internally stored weak_ptr is converted to a shared_ptr, thereby
increasing the reference count to make sure that the object is not deleted.

 Summary

 Reference-counted smart pointers are extremely important tools. Boost's shared_ptr provides a solid and flexible
solution that is proven through extensive use in many environments and circumstances. It is common to need to share
objects among clients, and that often means that there is no way of telling if, and when, the object can be deleted
safely. shared_ptr insulates clients from knowing about what other objects are using a shared object, and relieves
them of the task of releasing the resource when no objects refer to it. This is arguably the most important of the smart
pointer classes in Boost. You should get acquainted with the other classes in Boost.Smart_ptr, too, but this one
should definitely be kept close to heart. By using custom deleters, almost any type of resource can be stored in
shared_ptrs. This makes shared_ptr a general class for handling resource management, rather than "just" handling
dynamically allocated objects. There is a small overhead in size for shared_ptr compared to a raw pointer. I have yet
to see a case where this overhead actually matters so much that another solution must be sought. Don't roll your own
reference-counted smart pointer class. Instead, use shared_ptrsmart pointers don't get much better than this.

 Use shared_ptr in the following scenarios:


 When there are multiple clients of an object, but no explicit owner


When storing pointers in Standard Library containers


When passing objects to and from libraries without (other) expressed ownership


When managing resources that need special cleanup[9]

[9] With the help of custom deleters.





shared_array

 Header: "boost/shared_array.hpp"

 shared_array is a smart pointer that enables shared ownership of arrays. It is to shared_ptr what scoped_array is to
scoped_ptr. shared_array differs from shared_ptr mainly in that it is used with arrays rather than a single object.
When we discussed scoped_array, I mentioned that std::vector was often a better choice. But shared_array adds
some value over vector, because it offers shared ownership of arrays. The shared_array interface is similar to that of
shared_ptr, but with the addition of a subscript operator and without support for custom deleters.

 Because a shared_ptr to std::vector offers much more flexibility than shared_array, there's no usage section on
shared_array in this chapter. If you find that you need boost::shared_array, refer to the online documentation.





intrusive_ptr

 Header: "boost/intrusive_ptr.hpp"

 intrusive_ptr is the intrusive analogue to shared_ptr. Sometimes, there's no other choice than using an intrusive,
reference-counted smart pointer. The typical scenario is for code that has already been written with an internal
reference counter, and where there's no time to rewrite it (or where the code's not available). Another case is when
the size of a smart pointer must be exactly the size of a raw pointer, or when performance is hurt by the allocation of
the reference count for shared_ptr (a rare case, I'm sure!). The only case where it would seem that an intrusive smart
pointer is required, from a functional perspective, is when a member function of a pointed-to class needs to return this,
such that it can be used in another smart pointer. (Actually, there are ways to solve that problem with non-intrusive
smart pointers too, as we saw earlier in this chapter.) intrusive_ptr is different from the other smart pointers because it
requires you to provide the reference counter that it manipulates. 

When intrusive_ptr increments or decrements a reference count on a non-null pointer, it does so by making
unqualified calls to the functions intrusive_ptr_add_ref and intrusive_ptr_release, respectively. These functions are
responsible for making sure that the reference count is always correct and, if the reference counter drops to zero, to
delete the pointer. Therefore, you must overload those functions for your type, as we shall see later.

 This is a partial synopsis for intrusive_ptr, showing the most important functions.

namespace boost {

  template<class T> class intrusive_ptr {

  public:

    intrusive_ptr(T* p,bool add_ref=true);

    intrusive_ptr(const intrusive_ptr& r);

    ~intrusive_ptr();

    T& operator*() const;

    T* operator->() const;

    T* get() const; 

    operator unspecified-bool-type() const; 

  };

  template <class T> T* get_pointer(const intrusive_ptr<T>& p); 

  template <class T,class U> intrusive_ptr<T>

    static_pointer_cast(const intrusive_ptr<U>& r); 

}

Members

intrusive_ptr(T* p,bool add_ref=true);

This constructor stores the pointer p in *this. If p isn't null, and if add_ref is true, the constructor makes an unqualified
call to intrusive_ptr_add_ref(p). If add_ref is false, the constructor makes no call to intrusive_ptr_add_ref. This
constructor can throw an exception if intrusive_ptr_add_ref can throw.

intrusive_ptr(const intrusive_ptr& r);

The copy constructor saves a copy of r.get() and, if that pointer is not null, calls intrusive_ptr_add_ref with it. This
constructor never throws.

~intrusive_ptr();

If the stored pointer is not null, the intrusive_ptr destructor makes an unqualified call to the function
intrusive_ptr_release, with the stored pointer as argument. intrusive_ptr_release is responsible for decrementing the
reference count and deleting the pointer if it becomes zero. This function never throws.

T& operator*() const;

This dereferencing operator returns and dereferences the stored pointer. If the stored pointer is null, invoking this
operator results in undefined behavior. When in doubt, make sure that the intrusive_ptr has a non-null pointer. This is
done using either the function get or by testing the intrusive_ptr in a Boolean context. The dereferencing operator
never throws.

T* operator->() const;

This operator returns the stored pointer. Calling this operator when the referenced pointer is null invokes undefined
behavior. The operator never throws.

T* get() const; 

This member function returns the stored pointer. It can be used when a raw pointer is needed, and may be called even
when the stored pointer is null. This function never throws.

operator unspecified-bool-type() const; 

This conversion function returns a type that can be used in Boolean expressions, but it is not operator bool, because
that would allow for other operations that should be prohibited. The conversion allows intrusive_ptr to be tested in
Boolean contextsfor example, if (p), with p being an instance of intrusive_ptr. The returned value is TRue if the
intrusive_ptr references a non-null pointer; otherwise, it returns false. This conversion function never throws.

 Free Functions

template <class T> T* get_pointer(const intrusive_ptr<T>& p); 

The function returns p.get(), and its purpose is mainly to support generic programming.[10] It may also be used as a
coding convention instead of calling the member function get, because it can be overloaded to work with raw pointers
and third-party smart pointer classes. Some simply prefer calling a free function over accessing a member function.
[11] The function never throws.

[10] Such functions are known as shims. See [12] in the Bibliography.

[11] The idea is that the line between operating on the smart pointer and operating on what it points to can be blurred
when using smart pointer member functions. For example, p.get() and p->get() have completely different meanings
and can be a little difficult to distinguish at a glance, whereas get_pointer(p) and p->get() look nothing alike. Whether
that's a problem for you is a matter of taste and experience.

template <class T,class U>

  intrusive_ptr<T> static_pointer_cast(const intrusive_ptr<U>& r);

This function returns intrusive_ptr<T>(static_cast<T*>(r.get())). Unlike with shared_ptr, you can use static_cast
safely on pointers to objects stored in intrusive_ptrs. However, you may want to use this function for consistent usage
of smart pointer casts. static_pointer_cast never throws.

 Usage

 There are two major differences when using intrusive_ptr compared to using shared_ptr. The first is that you need to
provide the reference counting mechanism. The second is that it becomes legal to treat this as a smart pointer,[12]
which can sometimes be convenient, as we shall see. Note that in most cases, the right smart pointer to use is the
non-intrusive shared_ptr. 

[12] You cannot do that with shared_ptr without special measures, such as enable_shared_from_this.

 To use boost::intrusive_ptr, include "boost/intrusive_ptr.hpp" and then define the two free functions
intrusive_ptr_add_ref and intrusive_ptr_release. These should accept an argument that is a pointer to the type(s) that
you want to use with intrusive_ptr. Any return value from these two functions is discarded. Often, it makes sense to
parameterize these functions, and simply forward to member functions of the managed type to do the work (for
example, calling add_ref and release). If the reference counter becomes zero, intrusive_ptr_release should take care
of releasing the resource. Here's how you might implement these functions generically:

template <typename T> void intrusive_ptr_add_ref(T* t) {

  t->add_ref();

}

template <typename T> void intrusive_ptr_release(T* t) {

  if (t->release()<=0)

    delete t;

}

Note that these functions should be defined in the scope of their argument types. This means that if this function is
called with arguments from a namespace, the functions should be defined there, too. The reason for this is that the
calls are unqualified, which means that argument-dependent lookup is permitted, and there may be cases where more
than one version of these functions must be provided, which makes the global namespace a bad place to put them.
We'll see an example of where to place these functions later, but first, we need to provide some sort of internal
reference counter.

 Providing a Reference Counter

 Now that the management functions have been defined, we must provide an internal reference count. In this example,
the reference count is a private data member that's initialized to zero, and we'll expose add_ref and release member
functions to manipulate it. add_ref increments the reference count and release decrements it.[13] We could add a
third member function to return the current value of the reference count, but it suffices to have release return it. The
following base class, reference_counter, provides a counter and the add_ref and release member functions, making
adding reference counting to a class as easy as using inheritance. 

[13] Note that in a multithreaded environment, any operation on the variable holding the reference count needs to be
synchronized.

class reference_counter {

  int ref_count_;

  public:

    reference_counter() : ref_count_(0) {}

    virtual ~reference_counter() {}

    void add_ref() { 

      ++ref_count_;

    }

    int release() {

      return --ref_count_;

    }

  protected:

    reference_counter& operator=(const reference_counter&) {

    // No-op

      return *this;

    }

  private:

    // Copy construction disallowed

    reference_counter(const reference_counter&); 

};

The reason for making the destructor of reference_counter virtual is that the class is publicly inherited, and thus it is
possible to delete derived classes using a pointer to reference_counter. We want this deletion to do the right thingthat
is, to call the destructor for the derived type. The implementation is straightforward: add_ref increments the reference
count and release decrements the current reference count and returns it. To use this reference counter, all that's
needed is to derive publicly from it. Here's an example with a class some_ class that contains an internal reference
count, and intrusive_ptrs that use it.

#include <iostream>

#include "boost/intrusive_ptr.hpp"

class some_class : public reference_counter {

public:

  some_class() {

    std::cout << "some_class::some_class()\n";

  }

  some_class(const some_class& other) {

    std::cout << "some_class(const some_class& other)\n";

  }

  ~some_class() {

    std::cout << "some_class::~some_class()\n";

  }

};

int main() {

  std::cout << "Before start of scope\n";

  {

    boost::intrusive_ptr<some_class> p1(new some_class());

    boost::intrusive_ptr<some_class> p2(p1);

  }

  std::cout << "After end of scope \n";

}

To demonstrate that the intrusive_ptrs together with the functions intrusive_ptr_add_ref and intrusive_ptr_release do
their jobs right, here is the output from running the program:

Before start of scope

some_class::some_class()

some_class::~some_class()

After end of scope

The intrusive_ptr is taking care of business for us. When the first intrusive_ptr p1 is created, it is passed a new
instance of some_class. The intrusive_ptr constructor actually takes two arguments. The second is a bool that states
whether intrusive_ptr_add_ref should be called or not. Because the default value of this argument is TRue, when
constructing p1, the reference counter for the instance of some_class becomes 1. Then, a second intrusive_ptr, p2, is
constructed. It is copy constructed from p1, and when p2 sees that p1 is referencing a non-null pointer, it calls
intrusive_ptr_add_ref. The reference count is now 2. Then, the two intrusive_ptrs leave scope. First, p2 is destroyed,
and the destructor calls intrusive_ptr_release. This decrements the reference counter to 1. Then, p1 is destroyed, and
the destructor calls intrusive_ptr_release again, which causes the reference count to drop to 0; this in turn triggers our
implementation of intrusive_ptr_release to delete the pointer. You'll note that the implementation of reference_counter
is not thread-safe, and therefore cannot be used in multithreaded applications without adding synchronization.

 Rather than relying on a generic implementation of intrusive_ptr_add_ref and intrusive_ptr_release, we could have
these functions operate directly on the base class (here, reference_counter). The advantage of this approach is that
even if the classes derived from reference_counter are defined in other namespaces, intrusive_ptr_add_ref and
intrusive_ptr_release will still be found using ADL (argument dependent lookup). Changing the implementation of
reference_counter is straightforward.

class reference_counter {

  int ref_count_;

  public:

    reference_counter() : ref_count_(0) {}

    virtual ~reference_counter() {}

     friend void intrusive_ptr_add_ref(reference_counter* p) { 

       ++p->ref_count_;

     }

     friend void intrusive_ptr_release(reference_counter* p) {

       if (--p->ref_count_==0)

         delete p;

     }

  protected:

    reference_counter& operator=(const reference_counter&) {

    // No-op

      return *this;

    }

  private:

    // Copy construction disallowed

    reference_counter(const reference_counter&); 

};

Treating this As a Smart Pointer

 It's not altogether easy to come up with scenarios where intrusive, reference-counted smart pointers are really
required. Most, if not all, problems can be solved with non-intrusive smart pointers. However, there is one case in
which it's easier to use an intrusive reference count: when one needs to return this from a member function, to be
stored in another smart pointer. When returning this from a type that's being owned by non-intrusive smart pointers,
the result is that two different smart pointers believe that they own the same object, which implies that they will both
try to delete it when the time has come to do so. This leads to double deletion, with the probable result that your
application will crash. It must somehow be possible to tell the other smart pointer that this resource is already
referenced by another smart pointer, and that's exactly what an internal reference counter (implicitly) does. Because
the logic of intrusive_ptr indirectly operates on the internal reference count of the objects they refer to, there is no
violation of ownership or inconsistencies in the reference counting. The reference count is simply incremented. 

Let's take a look at the potential problem first, with an implementation relying on boost::shared_ptr for sharing
resource ownership. It's basically the example from earlier in this chapter, when discussing enable_shared_from_this.

#include "boost/shared_ptr.hpp"

class A;

void do_stuff(boost::shared_ptr<A> p) {

  // ...

}

class A {

public:

  call_do_stuff() {

   shared_ptr<A> p(???);

    do_stuff(p);

  }

};

int main() {

  boost::shared_ptr<A> p(new A());

  p->call_do_stuff();

}

The class A wants to call the function do_stuff, but the problem is that do_stuff expects a shared_ptr<A>, not a plain
pointer to A. So, in A::call_do_stuff, how should the shared_ptr be created? Now, let's rewrite A to make it
compatible with intrusive_ptr, by deriving from reference_counter, and let's also add an overloaded version of
do_stuff, accepting an argument of type intrusive_ptr<A>.

#include "boost/intrusive_ptr.hpp"

class A;

void do_stuff(boost::intrusive_ptr<A> p) {

  // ...

}

void do_stuff(boost::shared_ptr<A> p) {

  // ...

}

class A : public reference_counter {

public:

  void call_do_stuff() {

    do_stuff(this);

  }

};

int main() {

  boost::intrusive_ptr<A> p(new A());

  p->call_do_stuff();

}

As you can see, in this version of A::call_do_stuff, we are able to send this directly to the function expecting an
intrusive_ptr<A>, due to the converting constructor of intrusive_ptr.

 Here's a special treat to end this section: Now that A is supporting intrusive_ptr, we can actually write code that
creates a shared_ptr that wraps the intrusive_ptr, allowing us to call the original version of do_stuff, which takes a
shared_ptr<A> as argument. Assuming that you cannot control the source code for do_stuff, this might be a very real
problem that you need to solve. Again, the solution awaits in the form of a custom deleter, one that understands that it
needs to call intrusive_ptr_release. Here's the new version of A::call_do_stuff.

void call_do_stuff() {

  intrusive_ptr_add_ref(this);

  boost::shared_ptr<A> p(this,&intrusive_ptr_release<A>);

  do_stuff(p);

}

An elegant solution indeed. When there are no more shared_ptrs left, the custom deleter is invoked, which calls
intrusive_ptr_release, which in turn decreases the internal reference counter of A. Note that if intrusive_ptr_add_ref
and intrusive_ptr_release are implemented to operate on reference_counter, you'd create the shared_ptr like so:

boost::shared_ptr<A> p(this,&intrusive_ptr_release);

Supporting Different Reference Counters

 We talked earlier about the possibility of supporting different reference counts for different types. This may be
necessary when integrating existing classes with different reference-counting mechanisms (third-party classes
employing their own version of a reference-counter, for example). Or there may be different requirements for
deallocating, such as calling another function rather than delete. As mentioned already, the calls to
intrusive_ptr_add_ref and intrusive_ptr_release are unqualified. This means that the scope of the argument (the pointer
type) is considered during name lookup, and thus these functions should be defined in the same scope as the type on
which they should operate. If you implement generic versions of intrusive_ptr_add_ref and intrusive_ptr_release in the
global namespace, you make it impossible to create generic versions in other namespaces. For example, if a
namespace needs a special version for all of its types, specializations or overloads must be provided for each and
every type. Otherwise, the functions in the global namespace introduce an ambiguity. It is therefore not a good idea to
provide generic versions in the global namespace, though they are fine in other namespaces. 

Because of the way that we have implemented the reference counter, using the base class reference_counter, it is a
good idea to have an ordinary function in the global namespace that accepts an argument of type reference_counter*.
This still allows us to provide generic overloads inside other namespaces without introducing ambiguities. As an
example, consider the classes another_class and derived_class in a namespace called my_namespace.

namespace my_namespace {

  class another_class : public reference_counter {

  public:

    void call_before_destruction() const {

      std::cout << 

        "Yes, I'm ready before destruction\n";

    }

  };

  class derived_class : public another_class {};

   template <typename T> void intrusive_ptr_add_ref(T* t) {

     t->add_ref();

   }

  template <typename T> void intrusive_ptr_release(T* t) {

    if (t->release()<=0) {

      t->call_before_destruction();

      delete t;

    }

  }

}

Here, we have implemented generic versions of intrusive_ptr_add_ref and intrusive_ptr_release. We must therefore
remove the generic versions that we previously put in the global namespace, and replace them with non-templated
versions accepting a pointer to reference_counter as their argument. Or, we could omit these functions from the global
namespace altogether, to avoid cluttering it. For the two classes my_namespace::another_class and
my_namespace::derived_class, the special version (which calls a member function call_before_destruction on its
arguments) is called. Other types either have corresponding functions in the namespace where they are defined or use
the version in the global namespace, if it exists. Here's a short program to illustrate how this works:

int main() {

  boost::intrusive_ptr<my_namespace::another_class> 

    p1(new my_namespace::another_class());

  boost::intrusive_ptr<A> 

    p2(new good_class());

  boost::intrusive_ptr<my_namespace::derived_class> 

    p3(new my_namespace::derived_class());

}

First, the intrusive_ptr p1 is passed a new instance of my_namespace:: another_class. When resolving the call to
intrusive_ptr_add_ref, the compiler finds the version in my_namespace, the namespace of the my_namespace::
another_class* argument. Thus, the generic function, which is provided for types in that namespace, is correctly
invoked. This applies when finding intrusive_ptr_release, too. Then, the intrusive_ptr p2 is created and passed a
pointer of type A (the one we created earlier). That type resides in the global namespace, so when the compiler tries
to find the best match for the call to intrusive_ptr_add_ref, it finds only one, which is the version accepting an
argument of type pointer to reference_counter (you'll recall that we had to remove the generic version from the global
namespace). Because A inherits publicly from reference_counter, the implicit conversion succeeds and the correct call
is made. Finally, the generic version in my_namespace is used for the class my_namespace::derived_class; this works
exactly like the lookup for another_class.

 The important lesson here is that when implementing the function intrusive_ptr_add_ref and intrusive_ptr_release,
they should always be defined in the namespace where the types they operate on exist. This makes perfect sense from
a design perspective too, keeping related things together, and it helps ensure that the correct version is always called,
regardless of whether there are several different implementations to choose from.

 Summary

 In most situations, you should not use boost::intrusive_ptr, because the functionality of shared ownership is readily
available in boost::shared_ptr, and a non-intrusive smart pointer is more flexible than an intrusive smart pointer.
However, there are times when one needs an intrusive reference count, perhaps for legacy code or for integration with
third-party classes. When the need arises, intrusive_ptr fits the bill, with the same semantics as the other Boost smart
pointer classes. By using another of the Boost smart pointers, you ensure a consistent interface for all smart pointer
needs, be they intrusive or not. The reference count must be provided by the classes that are used with intrusive_ptr.
intrusive_ptr manages the reference count by making unqualified calls to two functions, intrusive_ptr_add_ref and
intrusive_ptr_release; these functions must properly manipulate the intrusive reference count for intrusive_ptrs to work
correctly. For all cases where a reference count already exists in the types that are to be used with intrusive_ptr,
enabling support for intrusive_ ptr is as easy as implementing those two functions. In some cases, it's possible to
create parameterized versions of those functions, and have all types with intrusive reference counts use the same
implementation of these functions. In most cases, the best place to declare the functions is in the same namespace as
the types they support. 

Use intrusive_ptr when


 You need to treat this as a smart pointer.


There is existing code that uses or provides an intrusive reference count.


It is imperative that the size of the smart pointer equals the size of a raw pointer.







weak_ptr

 Header: "boost/weak_ptr.hpp"

 A weak_ptr is an observer of a shared_ptr. It does not interfere with the ownership of what a shared_ptr shares.
When a shared_ptr that is being observed by a weak_ptr must release its resource, it sets the observing weak_ptr's
pointer to null. That prevents the weak_ptr from holding a dangling pointer. Why would you need a weak_ptr? There
are many situations where one needs to observe and use a shared resource without accepting ownership, such as to
break cyclic dependencies, to observe a shared resource without assuming ownership of it, or to avoid dangling
pointers. It's possible to construct a shared_ptr from a weak_ptr, thereby gaining access to the shared resource.

 This is a partial synopsis for weak_ptr, showing and then briefly discussing the most important functions.

namespace boost {

  template<typename T> class weak_ptr {

  public:

    template <typename Y>

      weak_ptr(const shared_ptr<Y>& r);

    weak_ptr(const weak_ptr& r);

    ~weak_ptr();

    T* get() const; 

    bool expired() const; 

    shared_ptr<T> lock() const;

  };  

} 

Members

template <typename Y> weak_ptr(const shared_ptr<Y>& r);      

This constructor creates a weak_ptr from a shared_ptr, provided there is an implicit conversion from Y* to T*. The
new weak_ptr is configured to observe the resource referred to by r. r's reference count remains unchanged. This
implies that the resource referenced by r may be deleted despite the existence of the new weak_ptr referring to it.
This constructor never throws.

weak_ptr(const weak_ptr& r); 

The copy constructor makes the new weak_ptr observe the resource referenced by shared_ptr r. The reference
count of the shared_ptr is unchanged. This constructor never throws.

~weak_ptr();

The weak_ptr destructor, similarly to the constructor, does not change the reference count. If needed, the destructor
detaches *this as an observer for the shared resource. This destructor never throws.

bool expired() const;

Returns TRue if the observed resource has "expired," which means that it has been released. If the stored pointer is
non-null, expired returns false. This function never throws.

shared_ptr<T> lock() const

Returns a shared_ptr that refers to the resource that this weak_ptr observes, if any. If there is no such pointer (that is,
the weak_ptr refers to the null pointer), the resulting shared_ptr refers to the null pointer. Otherwise, the reference
count for the resource referenced by the shared_ptr is incremented as usual. This function never throws.

 Usage

 We begin with an example that shows the basics of weak_ptrs, and especially demonstrates how they do not affect
the reference counts. Out of necessity, the examples in this subsection include shared_ptrs as well, because a
weak_ptr always needs to be used together with a shared_ptr. To use weak_ptr, include "boost/weak_ptr.hpp".

#include "boost/shared_ptr.hpp"

#include "boost/weak_ptr.hpp"

#include <iostream>

#include <cassert>

class A {};

int main() {

  boost::weak_ptr<A> w;

  assert(w.expired());

  {

    boost::shared_ptr<A> p(new A());

    assert(p.use_count()==1);

    w=p;

    assert(p.use_count()==w.use_count());

    assert(p.use_count()==1);

    // Create a shared_ptr from the weak_ptr

    boost::shared_ptr<A> p2(w);

    assert(p2==p);

  }

  assert(w.expired());

  boost::shared_ptr<A> p3=w.lock();

  assert(!p3);

}

The weak_ptr w is default constructed, which means that it initially isn't observing any resource. To test whether or
not a weak_ptr is observing a live object, you use the function expired. To start observing, a weak_ptr must be
assigned a shared_ptr. In the example, when shared_ptr p is assigned to weak_ptr w, it's asserted that the use
countsthat is, the reference countof p and w are equal. Then, a shared_ptr is constructed from the weak_ptr, which is
one of the ways to gain access to the shared resource from a weak_ptr. If the weak_ptr has expired when the
shared_ptr is constructed, an exception of type boost::bad_weak_ptr is thrown by shared_ptr's constructor. Moving
on, when the shared_ptr p goes out of scope, w is expired. When its member function lock is called to obtain a
shared_ptrthe second way of gaining access to the shared resourcean empty shared_ptr is returned. Note that
throughout the example, the weak_ptr had no effect on the reference count of the shared object.

 Unlike other smart pointers, weak_ptr doesn't provide access to the observed pointer with overloaded operator*
and operator->. The reason for this is that all operations on the resource that the weak_ptr is observing must explicitly
be made safe; it would be just too easy to inadvertently access an invalid pointer, as weak_ptrs do not affect the
reference counter of the shared resource they observe. This is why you must pass the weak_ptr to shared_ptr's
constructor, or obtain a shared_ptr by calling weak_ptr::lock. Both of these operations increase the reference count,
so after the shared_ptr is created from a weak_ptr, it keeps the shared resource alive, ensuring that it will not be
deallocated during the time we want to use it.

 A Common Question

 Because the ordering of smart pointers doesn't involve the actual values their pointers are pointing to but the pointer
values, a common question with regard to using these smart pointers in Standard Library containers is how to use
algorithms with the smart pointers; they typically need to access the values of the actual objects rather than their
addresses. For example, how does one call std::sort and make it perform useful sorting? Actually, the problem is
hardly any different from storing and operating on regular pointers in containers, but that fact is easily overlooked
(probably because storing a raw pointer is so problematic that we tend to avoid doing it). Out of the box, there is no
support for comparing the values of smart pointers, but that's easy to amend. A typical need is to use predicates that
dereference the smart pointers, so we'll create a reusable predicate that makes it easy to use the Standard Library
algorithms with iterators referencing smart pointersin this case, weak_ptrs.

#include <functional>

#include "boost/shared_ptr.hpp"

#include "boost/weak_ptr.hpp"

template <typename Func, typename T> 

  struct weak_ptr_unary_t : 

    public std::unary_function<boost::weak_ptr<T>,bool> {

  T t_;

  Func func_;

  weak_ptr_unary_t(const Func& func,const T& t) 

    : t_(t),func_(func) {}

  bool operator()(boost::weak_ptr<T> arg) const {

    boost::shared_ptr<T> sp=arg.lock();

    if (!sp) {

      return false;

    }

    return func_(*sp,t_);

  }

};

template <typename Func, typename T> weak_ptr_unary_t<Func,T> 

  weak_ptr_unary(const Func& func, const T& value) {

    return weak_ptr_unary_t<Func,T>(func,value);

}

The weak_ptr_unary_t function object is parameterized on the function to invoke, and the type of the argument. The
fact that the function to invoke is stored in the function object makes the function object easy to use, which we shall
see shortly. To make the predicate compatible with adapters, weak_ptr_unary_t derives from std::unary_function,
which makes sure that the required typedefs are present (this is required in order for the Standard Library adaptors to
work with such function objects). The real work is done in the function call operator, where a shared_ptr is created
from the weak_ptr. This is necessary to ensure that the resource stays alive during the function call. Then, the function
(or function object) is invoked, passing the argument (dereferenced, so that we get to the actual resource) and the
stored value, which was passed in the constructor for weak_ptr_unary_t. This simple function object can now be
used with any applicable algorithms. For convenience, we also defined a helper function, weak_ptr_unary, which
deduces the types of the arguments and returns an appropriate function object.[14] Let's see how we can use this
beast.

[14] To make this type generally usable, a lot more programming would be required.

#include <iostream>

#include <string>

#include <vector>

#include <algorithm>

#include "boost/shared_ptr.hpp"

#include "boost/weak_ptr.hpp"

int main() {

  using std::string;

  using std::vector;

  using boost::shared_ptr;

  using boost::weak_ptr;

  vector<weak_ptr<string> > vec;

  shared_ptr<string> sp1(

    new string("An example"));

  shared_ptr<string> sp2(

    new string("of using"));

  shared_ptr<string> sp3(

    new string("smart pointers and predicates"));

  vec.push_back(weak_ptr<string>(sp1));

  vec.push_back(weak_ptr<string>(sp2));

  vec.push_back(weak_ptr<string>(sp3));

  vector<weak_ptr<string> >::iterator

    it=std::find_if(vec.begin(),vec.end(),

     weak_ptr_unary(std::equal_to<string>(),string("of using")));

  if (it!=vec.end()) {

    shared_ptr<string> sp(*++it);

    std::cout << *sp << '\n';

  }

}

In the example, a vector containing weak_ptrs is created. The most interesting line of code (yes, it's quite a long one)
is where we create a weak_ptr_unary_t for use with the find_if algorithm.

vector<weak_ptr<string> >::iterator it=std::find_if(

  vec.begin(),

  vec.end(),

  weak_ptr_unary(

    std::equal_to<string>(),string("of using")));

The function object is created by passing another function object, std::equal_to, to the helper function
weak_ptr_unary, together with the string that is to be used for the matching. Because of the fact that
weak_ptr_unary_t is compatible with adaptors (it is compatible because it inherits from std::unary_function), we could
compose any type of function object out of it. For instance, we could have searched for the first string not matching
"of using":

vector<weak_ptr<string> >::iterator it=std::find_if(

  vec.begin(),

  vec.end(),

std::not1(

    weak_ptr_unary(

      std::equal_to<string>(),string("of using"))));

The Boost smart pointers were specifically designed to work well with the Standard Library. That makes it easy for
us to create useful components that help us simplify the usage of these powerful smart pointers. Utilities such as
weak_ptr_unary aren't needed all that often; there are libraries that provide general binders that do a much better job
of that than weak_ptr_unary.[15] These, too, are typically aware of smart pointer semantics, which makes using them
completely transparent to use.

 Two Idiomatic Ways of Creating a shared_ptr from a weak_ptr

 As you have seen, when you have a weak_ptr that's observing some resource, you'll eventually want to access that
resource. To do so, the weak_ptr must be converted to a shared_ptr, because the weak_ptr alone does not allow
direct access to the resource. There are two ways of creating a shared_ptr from a weak_ptr: Either pass the
weak_ptr to the constructor of shared_ptr or call the weak_ptr member function lock, which returns a shared_ptr.
Which to choose depends on whether you consider an empty weak_ptr to be an error or not. The shared_ptr
constructor accepting a weak_ptr argument will throw an exception of type bad_weak_ptr if the weak_ptr is empty.
It should therefore be used only if an empty weak_ptr constitutes an error. When using the weak_ptr function lock,
the returned shared_ptr will be empty if the weak_ptr is empty. This is the right thing to do if you need to test for a
valid resourcethat is, an empty weak_ptr is expected behavior. Furthermore, when using lock, the idiomatic way to
use the resource is to initialize it and test it simultaneously, like so:

#include <iostream>

#include <string>

#include "boost/shared_ptr.hpp"

#include "boost/weak_ptr.hpp"

int main() {

  boost::shared_ptr<std::string> 

    sp(new std::string("Some resource"));

  boost::weak_ptr<std::string> wp(sp);

  // ...

  if (boost::shared_ptr<std::string> p=wp.lock())

    std::cout << "Got it: " << *p << '\n';

  else

    std::cout << "Nah, the shared_ptr is empty\n";

}

As you can see, the shared_ptr p is initialized with the result of locking the weak_ptr wp. Then p is tested, and only if
it is non-empty is the resource accessed. As the shared_ptr is only valid in that scope, there is no chance of
inadvertently trying to use it outside of the scope where it is valid. The other scenario is when the weak_ptr logically
must be non-empty. In that case, testing for an empty shared_ptr is easy to forgetand because the shared_ptr
constructor throws an exception when handed an empty weak_ptr, this is the way to go.

#include <iostream>

#include <string>

#include "boost/shared_ptr.hpp"

#include "boost/weak_ptr.hpp"

void access_the_resource(boost::weak_ptr<std::string> wp) {

  boost::shared_ptr<std::string> sp(wp);

  std::cout << *sp << '\n';

}

int main() {

  boost::shared_ptr<std::string> 

    sp(new std::string("Some resource"));

  boost::weak_ptr<std::string> wp(sp);

  // ...

  access_the_resource(wp);  

}

In this example, the function access_the_resource constructs the shared_ptr sp from a weak_ptr. It doesn't need to
test whether the shared_ptr is empty or not, because if the weak_ptr is empty, an exception of type bad_weak_ptr is
thrown, and therefore the function leaves scope immediately; catching and handling the error will be handled where it's
suitable. This is much better than explicitly testing for an empty shared_ptr and then returning. These are the two ways
in which to get a shared_ptr out of a weak_ptr.

 Summary

 weak_ptr is the last piece that we must place on the Boost smart pointer puzzle. The weak_ptr abstraction is a very
important companion to that of shared_ptr. It allows us to break cyclic dependencies. It also handles a very common
problemthat of the dangling pointer. When sharing a resource, it is common that some of the users of that resource
must not take part in its lifetime management. This cannot be handled using raw pointers, because when the last
shared_ptr is destroyed, it takes the shared resource with it. Had raw pointers been used to refer to that resource,
there would be no way of knowing whether the resource still exists. If it doesn't, accessing it wreaks havoc. With
weak_ptrs, the information that the shared resource has been destroyed is propagated to all weak_ptrs observing it,
which means that no one can inadvertently access an invalid pointer. It's like a special case of the Observer pattern;
when the resource is destroyed, those who have expressed interest in knowing about it are informed. 

Use weak_ptr to


 Break cyclic dependencies


Use a shared resource without sharing ownership


Avoid dangling pointers





Smart_ptr Summary
 This chapter has introduced the Boost smart pointers, a contribution to the C++ community that can hardly be
overestimated. For a smart pointer library to be successful, it must take into consideration and correctly handle a great
number of factors. I'm sure you have seen quite a number of smart pointers, and you might have even been involved in
their creation, so you are aware of the effort involved to get things right. Not many smart pointers are as smart as they
should be, and that makes the value of a proven library such as Boost.Smart_ptr immense.

 Being such a central component of software engineering, the smart pointers in Boost have obviously received a lot of
attention and thorough review. It is therefore hard to give credit to all who deserve it. Many have contributed valuable
opinions and have been part of shaping the current smart pointer library. However, a few exceptional people and
efforts must be mentioned here:



 Greg Colvin, the father of auto_ptr, also suggested counted_ptr, which later became what we now call
shared_ptr.



Beman Dawes revived the discussion about smart pointers and proposed that the original semantics as
suggested by Greg Colvin be considered.



Peter Dimov redesigned the smart pointer classes, adding thread safety, intrusive_ptr, and weak_ptr.

 It is intriguing that such a well-known concept continues to evolve. There will undoubtedly be more progress in the
domain of smart pointers or maybe, smart resources, but just as important is the quality of smart pointers that are used
today. It's survival of the fittest, and that's why people are using Smart_ptr. The Boost smart pointers are a fine,
assorted selection of delicious software chocolate, and I eat them regularly (you should, too). We'll soon see some of
them become part of the C++ Standard Library, as they have been accepted into the Library Technical Report.



Endnotes 

15.
Boost.Bind is just such a library.



Library 2. Conversion



How Does the Conversion Library Improve Your Programs?


 Understandable, maintainable, and consistent polymorphic conversions


Static downcasting using safer constructs than static_cast


Range-preserving numeric conversions that ensure correct value logic and less time debugging


Correct and reusable lexical conversions that lead to less time coding

 The versatility of C++ is one of the primary reasons for its success, but sometimes also a formidable source of
headaches because of the complexity of certain parts of the language. For instance, the rules for numeric conversions
and type promotions are far from trivial. Other conversions are trivial, but tedious; how many times do we need to
write a safe function[1] for converting between strings and ints, doubles and strings, and so on? Conversions can be
problematic in every library and program you write, and that's how and why the Conversion library can help. It
provides facilities that prevent dangerous conversions and simplify recurring conversion tasks.

[1] To avoid using sprintf and its ilk.

 The Conversion library consists of four cast functions that provide better type safety (polymorphic_cast), better
efficiency with preserved type safety (polymorphic_downcast), range-checked numeric conversions (numeric_cast),
and lexical conversions (lexical_cast). These cast-like functions share the semantics of the C++ cast operators. Like
the C++ cast operators, these functions have an important quality that, together with type safety, sets them apart from
C-style casts: They unambiguously state the programmer's intent.[2] The importance of the code we write goes far
further than its implementation and present behavior. More important is to clearly convey our intents when writing it.
This library makes it somewhat easier by extending our C++ vocabulary.

[2] They can also be overloaded, which sometimes makes them superior to the C++ cast operators.





polymorphic_cast

 Header: "boost/cast.hpp"

 Polymorphic conversions in C++ are performed via dynamic_cast. A feature of dynamic_cast, which is sometimes
also the cause of erroneous code, is that it behaves differently depending on the type with which it is used.
dynamic_cast tHRows an exceptionstd::bad_castif the conversion is not possible when used on a reference type. The
reason for the exception is simple. There is no such thing as a null reference in C++, so either the conversion succeeds
and the result is a valid reference or it fails and you get an exception instead. Of course, when using dynamic_cast to
convert a pointer type, failure is indicated by returning the null pointer.

 dynamic_cast's different behavior depending on whether pointer or reference types are used is a valuable property,
because it allows the programmer to express intent. Typically, if a failed conversion doesn't constitute a logical error,
the pointer conversion is used, and if it is an error, the reference version is used. Unfortunately, the difference is quite
subtleit boils down to an asterisk or an ampersandand it isn't always a natural choice. What if a failed cast to a pointer
type is an error? To make that clear by having an exception thrown automatically, and to make the code consistent,
Boost offers polymorphic_cast. It always throws a std::bad_cast exception if the conversion fails.

 In The C++ Programming Language 3rd Edition, Stroustrup has the following to say about dynamic_cast with pointer
types, and the fact that it can return the null pointer:

 "Explicit tests against 0 can beand therefore occasionally will beaccidentally omitted. If that worries you, you can
write a conversion function that throws an exception in case of failure."

 polymorphic_cast is precisely that conversion function.

 Usage

 polymorphic_cast is used just like dynamic_cast, except (pun intended) that it always throws a std::bad_cast on
failure to convert. Another feature of polymorphic_cast is that it is a function, and can be overloaded, if necessary. As
a natural extension to our C++ vocabulary, it makes code clearer and casts less error prone. To use it, include the
header "boost/cast.hpp". The function is parameterized on the type to convert to, and accepts one argument to be
converted.

template <class Target, class Source>

  polymorphic_cast(Source* p);

It should be mentioned that there is no version of polymorphic_cast for reference types. The reason for this is that the
implementation would do exactly what dynamic_cast already does, and there is no need for polymorphic_cast to
duplicate existing functionality of the C++ language. The following example shows the syntactic similarity with
dynamic_cast.

 Downcast and Crosscast

 There are two typical scenarios when using dynamic_cast or polymorphic_cast is appropriate: when downcasting
from a base class to a derived class or when crosscasting, which means casting from one base class to another. The
following example shows both types of casts using polymorphic_cast. There are two base classes, base1 and base2,
and a class derived that inherits publicly from both of the base classes.

#include <iostream>

#include <string>

#include "boost/cast.hpp"

class base1 {

public:

  virtual void print() {

    std::cout << "base1::print()\n";

  }

  virtual ~base1() {}

};

class base2 {

public:

  void only_base2() {

    std::cout << "only_base2()\n";

  }

  virtual ~base2() {}

};

class derived : public base1, public base2 {

public:

  void print() {

    std::cout << "derived::print()\n";

  }

  void only_here() {

    std::cout << "derived::only_here()\n";

  }

  void only_base2() {

    std::cout << "Oops, here too!\n";

  }

};

int main() {

  base1* p1=new derived;

 p1->print();

  try {

    derived* pD=boost::polymorphic_cast<derived*>(p1);

    pD->only_here();

    pD->only_base2();

    base2* pB=boost::polymorphic_cast<base2*>(p1);

    pB->only_base2();

  }

  catch(std::bad_cast& e) {

    std::cout << e.what() << '\n';

  }

  delete p1;

}

To show how polymorphic_cast works, the first thing we did was to create an instance of derived and manipulate it
through various pointers to the base and derived classes. The one function that will work out-of-the-box for p1 is
print, which is a virtual function in base1 and derived. We then use a downcast to be able to call only_here, available
only in derived:

derived* pD=boost::polymorphic_cast<derived*>(p1);

pD->only_here();

Note that if the polymorphic_cast fails, a std::bad_cast exception is thrown, so the code is protected by a try/catch
block. This behavior is exactly the same as for dynamic_cast using reference types. The pointer pD is then used to call
the function only_base2. The function is a non-virtual function in base2, but is also provided by derived, which hides
the version in base2. Thus, we need to perform a crosscast to get a pointer to base2 to call base2::only_base2 rather
than derived::only_base2.

base2* pB=boost::polymorphic_cast<base2*>(p1);

pB->only_base2();

Again, if the conversion fails, an exception is thrown. This example shows the ease with which error handling is
performed when using polymorphic_cast if failed conversions are considered errors. There is no need to test for null
pointers or to propagate an error out of the function explicitly. As we shall see shortly, dynamic_cast sometimes adds
unnecessary complexity for this type of code; it may even lead to undefined behavior.

 dynamic_cast Versus polymorphic_cast

 To see the difference between these complementary casts,[3] let's put them head to head in a race against
complexity. We'll reuse the classes base1, base2, and derived from the previous example. You'll note that the tests for
a valid pointer when employing dynamic_cast on pointer types are both tedious and repetitious, which makes the tests
unfortunate candidates for being omitted by stressed programmers.

[3] Technically, dynamic_cast is a cast operator, whereas polymorphic_cast is a function template.

void polymorphic_cast_example(base1* p) {

  derived* pD=boost::polymorphic_cast<derived*>(p);

  pD->print();

  base2* pB=boost::polymorphic_cast<base2*>(p);

  pB->only_base2();

}

void dynamic_cast_example(base1* p) {

  derived* pD=dynamic_cast<derived*>(p);

  if (!pD)

    throw std::bad_cast();

  pD->print();

  base2* pB=dynamic_cast<base2*>(p);

  if (!pB)

    throw std::bad_cast();

  pB->only_base2();

}

int main() {

  base1* p=new derived;

  try {

    polymorphic_cast_example(p);

    dynamic_cast_example(p);

  }

  catch(std::bad_cast& e) {

    std::cout << e.what() << '\n';

  }

  delete p;

}

The two functions, polymorphic_cast_example and dynamic_cast_example, perform exactly the same work but in
different ways. The difference is that wherever a dynamic_cast involving pointers is performed, we must remember to
test the returned pointer to see if it is null. In our example, this designates an error, which should result in an exception
of type bad_cast being thrown.[4] When using polymorphic_cast, the error handling is localized to the exception
handler for std::bad_cast, which means that we do not need to worry about testing any returned values from casting
between types. In this trivial example, it's not that hard to remember to test for validity of the returned pointer, but it
still requires more work than when using polymorphic_cast. Add a couple of hundred lines of code, and two or three
programmers performing maintenance in the function, and the risk of a forgotten test, or failure to throw the
appropriate exception, increases drastically.

[4] Of course, the returned pointer must always be tested anyway, unless one is absolutely certain that the conversion
will not fail.

 polymorphic_cast Isn't Always the Right Choice

 If a failed polymorphic pointer cast is not an error, you should use dynamic_cast rather than polymorphic_cast. For
example, this is often the case when one uses dynamic_cast to test for certain types. Using exception handling to try
conversions to several types makes for inefficient, hard-to-read code. It is this behavior of dynamic_cast that is its real
strength. When using both polymorphic_cast and dynamic_cast, you can capture your intent very clearly. Even
without polymorphic_cast, if people know about the different ways that dynamic_cast works, it is still possible to
achieve the same level of safety, as is shown in the following example.

void failure_is_error(base1* p) {

  try {

    some_other_class& soc=dynamic_cast<some_other_class&>(*p);

    // Use soc

   }

  catch(std::bad_cast& e) {

    std::cout << e.what() << '\n';

  }

}

void failure_is_ok(base1* p) {

  if (some_other_class* psoc=

    dynamic_cast<some_other_class*>(p)) {

    // Use psoc

  }

}

In this example, the pointer p is dereferenced[5] and the target type of the conversion is a reference to
some_other_class. This invokes the throwing version of dynamic_cast. The second part of the example uses the
non-throwing version by converting to a pointer type. Whether you see this as a clear and concise statement of the
code's intent depends upon your experience. Veteran C++ programmers will understand the last example perfectly
well. Will all of those reading the code be sufficiently familiar with the workings of dynamic_cast, or is it possible that
they'll be unaware of the fact that it works differently depending on whether the type being converted is a pointer or
reference? Will you or a maintenance programmer always remember to test for the null pointer? Will a maintenance
programmer realize that dereferencing the pointer is necessary to get the exception if the conversion fails? Do you
really want to write the same logic every time you need this behavior? Sorry for this rhetoricits intent is to make it
painfully obvious that polymorphic_cast makes a stronger, clearer statement than dynamic_cast when a conversion
failure should result in an exception. It either succeeds, producing a valid pointer, or it fails, throwing an exception.
Simple rules are easier to remember.

[5] If the pointer p is null, the example results in undefined behavior because it will dereference a null pointer.

 We haven't looked at how you can overload polymorphic_cast to account for unusual conversion needs, but it should
be noted that it's possible. When would you want to change the default behavior of a polymorphic cast? One example
is for handle/body-classes, where the rules for downcasting may be different from the default, or should be disallowed
altogether.

 Summary

 It is imperative to remember that others need to maintain the code we write. That means that we have to make sure
that the code and its intent are clear and understandable. In part, this can be accomplished by annotating the code, but
it's much easier for everyone if the code is self-explanatory. polymorphic_cast documents the intent of code more
clearly than dynamic_cast when an exception is expected for failed (pointer) conversions, and it makes for shorter
code. If a failed conversion isn't considered an error, dynamic_cast should be used instead, which makes use of
dynamic_cast clearer, too. Using dynamic_cast as the only means of expressing these different purposes is error
prone and less clear. The difference between the throwing and non-throwing version is too subtle for many
programmers.

 When to use polymorphic_cast and dynamic_cast:


 When a polymorphic cast failure is expected, use dynamic_cast<T*>. It makes clear that the failure is not an
error.



When a polymorphic cast must succeed in order for the logic to be correct, use polymorphic_cast<T*>. It
makes clear that a conversion failure is an error.



When performing polymorphic casts to reference types, use dynamic_cast.







polymorphic_downcast

 Header: "boost/cast.hpp"

 Sometimes dynamic_cast is considered too inefficient (measured, I'm sure!). There is runtime overhead for
performing dynamic_casts. To avoid that overhead, it is tempting to use static_cast, which doesn't have such
performance implications. static_cast for downcasts can be dangerous and cause errors, but it is faster than
dynamic_cast. If the extra speed is required, we must make sure that the downcasts are safe. Whereas dynamic_cast
tests the downcasts and returns the null pointer or throws an exception on failure, static_cast just performs the
necessary pointer arithmetic and leaves it up to the programmer to make sure that the conversion is valid. To be sure
that static_cast is safe for downcasting, you must make sure to test every conversion that will be performed.
polymorphic_downcast tests the cast with dynamic_cast, but only in debug builds; it then uses static_cast to perform
the conversion. In release mode, only the static_cast is performed. The nature of the cast implies that you know it
can't possibly fail, so there is no error handling, and no exception is ever thrown. So what happens if a
polymorphic_downcast fails in a non-debug build? Undefined behavior. Your computer may melt. The Earth may
stop spinning. You may float above the clouds. The only thing you can safely assume is that bad things will happen to
your program. If a polymorphic_downcast fails in a debug build, it asserts on the null pointer result of dynamic_cast.

 Before considering how to speed up a program by exchanging polymorphic_downcast for dynamic_cast, review the
design. Optimizations on casts are likely indicators of a design problem. If the downcasts are indeed needed and
proven to be performance bottlenecks, polymorphic_downcast is what you need. You can only find erroneous casts
in testing, not production (release builds), and if you've ever had to listen to a screaming customer on the other end of
the phone, you know that catching errors in testing is rather important and makes life a lot easier. Even more likely is
that you've been the customer from time to time, and know firsthand how annoying it is to find and report someone
else's problems. So, use polymorphic_downcast if needed, but tread carefully.

 Usage

 polymorphic_downcast is used in situations where you'd normally use dynamic_cast but don't because you're sure
which conversions will take place, that they will all succeed, and that you need the improved performance it brings.
Nota bene: Be sure to test all possible combinations of types and casts using polymorphic_downcast. If that's not
possible, do not use polymorphic_downcast; use dynamic_cast instead. When you decide to go ahead and use
polymorphic_downcast, include "boost/cast.hpp".

#include <iostream>

#include "boost/cast.hpp"

struct base {

  virtual ~base() {};

};

struct derived1 : public base {

  void foo() {

    std::cout << "derived1::foo()\n";

  }

};

struct derived2 : public base {

  void foo() {

    std::cout << "derived2::foo()\n";

  }

};

void older(base* p) {

  // Logic that suggests that p points to derived1 omitted

  derived1* pd=static_cast<derived1*>(p);

  pd->foo(); // <-- What will happen here?

}

void newer(base* p) {

  // Logic that suggests that p points to derived1 omitted

  derived1* pd=boost::polymorphic_downcast<derived1*>(p);

  // ^-- The above cast will cause an assertion in debug builds

  pd->foo();

}

int main() {

       derived2* p=new derived2;

       older(p); // <-- Undefined

       newer(p); // <-- Well defined in debug build

}

The static_cast in the function older will succeed,[6] and as bad luck would have it, the existence of a member
function foo lets the error (probably, but again, no guarantees hold here) slip until someone with an error report in one
hand and a debugger in the other starts looking into some strange behavior. When the pointer is downcast using
static_cast to a derived1*, the compiler has no option but to trust the programmer that the conversion is valid.
However, the pointer passed to older is in fact pointing to an instance of derived2. Thus, the pointer pd in older
actually points to a completely different type, which means that anything can happen. That's the risk one takes when
using a static_cast to downcast. The conversion will always "succeed" but the pointer may not be valid.

[6] At least it will compile.

 In the call to function newer, the "better static_cast," polymorphic_downcast not only catches the error, it is also kind
enough to pinpoint the location of the error by asserting. Of course, that's true only for debug builds, where the cast is
tested by a dynamic_cast. Letting an invalid conversion through to release will cause grief. In other words, you get
added safety for debug builds, but that doesn't necessarily mean that you've tried all possible conversions.

 Summary

 Performing downcasts using static_cast is dangerous in many situations. You should almost never do it, but if the
need does arise, some additional safety can be bought by using polymorphic_downcast. It adds tests in debug builds,
which can help find conversion errors, but you must test all possible conversions to make its use safe.



 If you are downcasting and need the speed of static_cast in release builds, use polymorphic_downcast; at
least you'll get assertions for errors during testing.



If it's not possible to cover all possible casts in testing, do not use polymorphic_downcast.

 Remember that this is an optimization, and you should only apply optimizations after profiling demonstrates the need
for them.







numeric_cast

 Header: "boost/cast.hpp"

 Conversions between integral types can often produce unexpected results. For example, a long can typically hold a
much greater range of values than a short, so what happens when assigning a long to a short and the long's value is
outside of short's range? The answer is that the result is implementation defined (a nice term for "you can never know
for sure"). Signed to unsigned conversions between same size integers are fine, so long as the signed value is positive,
but what happens if the signed value is negative? It turns into a large unsigned value, which is indeed a problem if that
was not the intention. numeric_cast helps ensure valid conversions by testing whether the range is preserved and by
throwing an exception if it isn't.

 7. The C++ Standard covers promotions and conversions for numeric types in §4.5-4.9.

 Before we can fully appreciate numeric_cast, we must understand the rules that govern conversions and promotions
of integral types. The rules are many and sometimes subtlethey can trap even the experienced programmer. Rather
than stating all of the rules7 and then carry on, I'll give you examples of conversions that are subject to undefined or
surprising behavior, and explain which rules the conversions adhere to.

 When assigning to a variable from one of a different numeric type, a conversion occurs. This is perfectly safe when
the destination type can hold any value that the source can, but is unsafe otherwise. For example, a char generally
cannot hold the maximum value of an int, so when an assignment from int to char occurs, there is a good chance that
the int value cannot be represented in the char. When the types differ in the range of values they can represent, we
must make sure that the actual value to convert is in the valid range of the destination type. Otherwise, we enter the
land of implementation-defined behavior; that's what happens when a value outside of the range of possible values is
assigned to a numeric type.[8] Implementation-defined behavior means that the implementation is free to do whatever
it wants to; different systems may well have totally different behavior. numeric_cast can ensure that the conversions
are valid and legal or they will not be allowed.

[8] Unsigned arithmetic notwithstanding; it is well defined for these cases.

 Usage

 numeric_cast is a function template that looks like a C++ cast operator and is parameterized on both the destination
and source types. The source type can be implicitly deduced from the function argument. To use numeric_cast,
include the header "boost/cast.hpp". The following two conversions use numeric_cast to safely convert an int to a
char, and a double to a float.

char c=boost::numeric_cast<char>(12);

float f=boost::numeric_cast<float>(3.001);

One of the most common numeric conversion problems is assigning a value from a type with a wider range than the
one being assigned to. Let's see how numeric_cast can help.

 Assignment from a Larger to a Smaller Type

 When assigning a value from a larger type (for example, long) to a smaller type (for example, short), there is a chance
that the value is too large or too small to be represented in the destination type. If this happens, the result is (yes,
you've guessed it) implementation-defined. We'll talk about the potential problems with unsigned types later; let's just
start with the signed types. There are four built-in signed integral types in C++:



 signed char


short int (short)


int


long int (long)

 There's not much one can say with absolute certainty about which type is larger[9] than others, but typically, the
listing is in increasing size, with the exception that int and long often hold the same range of values. They're all distinct
types, though, even if they're the same size. To see the sizes on your system, use either sizeof(T) or
std::numeric_limits<T>::max() and std::numeric_limits<T>::min().

[9] Of course, the ranges of signed and unsigned types are different even if the types have the same size.

 When assigning one signed integral type to another, the C++ Standard says:

 "If the destination type is signed, the value is unchanged if it can be represented in the destination type (and bitfield
width); otherwise, the value is implementation-defined."[10]

[10] See §4.7.3 of the C++ Standard.

 The following piece of code gives an example of how these implementation-defined values are often the result of
seemingly innocent assignments, and finally how they are avoided with the help of numeric_cast.

#include <iostream>

#include "boost/cast.hpp"

#include "boost/limits.hpp"

int main() {

  std::cout << "larger_to_smaller example\n";

  // Conversions without numeric_cast

  long l=std::numeric_limits<short>::max();

  short s=l;

  std::cout << "s is: " << s << '\n';

  s=++l;

  std::cout << "s is: " << s << "\n\n";

  // Conversions with numeric_cast

  try {

    l=std::numeric_limits<short>::max();

    s=boost::numeric_cast<short>(l);

    std::cout << "s is: " << s << '\n';

    s=boost::numeric_cast<short>(++l);

    std::cout << "s is: " << s << '\n';

  }

  catch(boost::bad_numeric_cast& e) {

    std::cout << e.what() << '\n';

  }

}

Utilizing std::numeric_limits, the long l is initialized to the maximum value that a short can possibly hold. That value is
assigned to the short s and printed. After that, l is incremented by one, which means that it now holds a value that
cannot be represented by a short; it is outside the range of values that a short can represent. After assigning from the
new value of l to s, s is printed again. What's the value, you might ask? Well, because the assignment results in
implementation-defined behavior, that depends upon the platform. On my system, with my compiler, it turns out that
the result is a large negative value, which implies that the value has been wrapped. There's no telling[11] what it will be
on your system without running the preceding code. Next, the same operations are performed again, but this time
using numeric_cast. The first cast succeeds, because the value is within range. The second, however, fails, and the
result is that an exception of type bad_numeric_cast is thrown. The output of the program is as follows.

[11] Although the behavior and value demonstrated here is very common on 32-bit platforms.

larger_to_smaller example

s is: 32767

s is: -32768

s is: 32767

bad numeric cast: loss of range in numeric_cast

A benefit that might be even more important than dodging the implementation-defined value is that numeric_cast helps
us avoid errors that are otherwise very hard to trap. The strange value could be passed on to other parts of the
application, perhaps working in some cases, but almost certainly yielding the wrong result. Of course, this only
happens for certain values, and if those values seldom occur, the error will be very hard to track down. Such errors
are insidious because they happen only for some values rather than all of the time.

 Loss of precision or range is not unusual, and if you aren't absolutely certain that a value too large or too small for the
destination type will never be assigned, numeric_cast is the tool for you. You can even use numeric_cast when it's
unnecessary; the maintenance programmer may not have the same insight as you do. Note that although we have
covered only signed types here, the same principles apply to unsigned integral types, too.

 Special CaseUnsigned Integral Type As Destination

 Unsigned integral types have a very interesting propertyany numeric value can be legally assigned to them! There is
no notion of positive or negative overflow when it comes to unsigned types. They are reduced modulo the number that
is one greater than the largest value of the destination type. Say what? An example in code might make it clearer.

#include <iostream>

#include "boost/limits.hpp"

int main() {

  unsigned char c;

  long l=std::numeric_limits<unsigned char>::max()+14;

  c=l;

  std::cout << "c is:       " << (int)c << '\n';

  long reduced=l%(std::numeric_limits<unsigned char>::max()+1);

  std::cout << "reduced is: " << reduced << '\n';

}

The output of running the program follows:

c is:       13

reduced is: 13

The example assigns a value that is certainly greater than what an unsigned char can hold, and then that same value is
calculated. The workings of the assignment is shown in this line:

long reduced=l%(std::numeric_limits<unsigned char>::max()+1);

This behavior is often referred to as value wrapping. If you want to use this property of unsigned integral types, there
is no need to use numeric_cast in those situations. Furthermore, numeric_cast won't accept it. numeric_cast's intent is
to catch errors, and this is considered an error because it is the result of a typical user misunderstanding. If the
destination type cannot represent the value that is being assigned, a bad_numeric_cast exception is thrown. Just
because unsigned integer arithmetic is well defined doesn't make the programmer's error less fatal.[12] For
numeric_cast, the important aspect is to preserve the actual value.

[12] The point: If you really want value wrapping, don't use numeric_cast.

 Mixing Signed and Unsigned Integral Types

 It's easy to have fun[13] when mixing signed and unsigned types, especially when performing arithmetic operations.
Plain assignments offer some clever pitfalls, too. The most common problem is assigning a negative value to an
unsigned type. The result is almost certainly not what was intended. Another issue is when assigning from an unsigned
type to a signed type of the same size. Somehow, it seems to be easy to forget that the unsigned type can hold higher
values than the signed counterpart. It's even easier to forget the types involved in an expression or function call. Here's
an example that shows how these common errors are caught by numeric_cast.

[13] This is a highly subjective matter, of course, and your mileage may vary.

#include <iostream>

#include "boost/limits.hpp"

#include "boost/cast.hpp"

int main() {

  unsigned int ui=std::numeric_limits<unsigned int>::max();

  int i;

  try {

    std::cout << "Assignment from unsigned int to signed int\n";

    i=boost::numeric_cast<int>(ui);

  }

  catch(boost::bad_numeric_cast& e) {

    std::cout << e.what() << "\n\n";

  }

  try {

    std::cout << "Assignment from signed int to unsigned int\n";

    i=-12;

    ui=boost::numeric_cast<unsigned int>(i);

  }

  catch(boost::bad_numeric_cast& e) {

    std::cout << e.what() << "\n\n";

  }

}

The output clearly shows that the errors were trapped as expected.

Assignment from unsigned int to signed int

bad numeric cast: loss of range in numeric_cast

Assignment from signed int to unsigned int

bad numeric cast: loss of range in numeric_cast

The basic rule to follow is simple: Whenever a type conversion is performed between different types, make the
conversion safe by using numeric_cast.

 Floating Point Types

 numeric_cast does not help with loss of precision when converting between floating point types. The reason is that
the conversions between float, double, and long double aren't susceptible to the implicit conversions of integer types.
It is important to remember that because it is easy to think that the following would result in an exception being
thrown.

double d=0.123456789123456;

float f=0.123456;

try {

  f=boost::numeric_cast<float>(d);

}

  catch(boost::bad_numeric_cast& e) {

    std::cout << e.what();

}

No exception will be thrown when running this code. The conversion from double to float results in a loss of precision
on most implementations, although it's not guaranteed by the C++ Standard. All we know for sure is that a double has
at least the precision of a float.

 What about conversions from floating point types to integer types? When a floating point type is converted to an
integer type, it is truncated; the fractional part is discarded. numeric_cast performs the same checking on the truncated
value and destination type range as it would for two integral types.

double d=127.123456789123456;

char c;

std::cout << "char type maximum: ";

std::cout << (int)std::numeric_limits<char>::max() << "\n\n";

c=d;

std::cout << "Assignment from double to char: \n";

std::cout << "double: " << d << "\n";

std::cout << "char:   " << (int)c << "\n";

std::cout << "Trying the same thing with numeric_cast:\n";

try {

  c=boost::numeric_cast<char>(d);

  std::cout << "double: " << d;

  std::cout << "char:   " << (int)c;

}

  catch(boost::bad_numeric_cast& e) {

    std::cout << e.what();

}

Doing range checks to ensure valid assignments like the preceding ones is a daunting task. Although the rules seem
simple, there are many combinations that must be considered. For example, a test for floating point to integral
assignment could look like this:

template <typename INT, typename FLOAT>

  bool is_valid_assignment(FLOAT f) {

    return std::numeric_limits<INT>::max() >=

      static_cast<INT>(f);

  }

Even though I just mentioned that the fractional part is discarded when a floating point type is converted, it's easy to
miss the error in this implementation. This is the nature of conversions and promotions of arithmetic types. Omitting the
static_cast makes the test work correctly, because the result of numeric_limits<INT>::max then is converted to the
floating point type.[14] If the floating point value is converted to an integral type, it is truncated; in other words, the
bug in this function is that any fractional part is lost.

[14] As a result of the usual arithmetic conversions.

 Summary

 numeric_cast offers efficient, range-checked conversions between arithmetic types. For those cases where the
destination type can hold all values that the source type can, there is no efficiency penalty for using numeric_cast. It
only has impact when the destination type can hold only a subset of the values of the source type. When a conversion
fails, numeric_cast signals the failure by throwing an exception of type bad_numeric_cast. As there are so many
intricate rules governing conversions between numeric types, ensuring correctness is vital.

 When to use numeric_cast:


 When assigning/comparing unsigned and signed types


When assigning/comparing integral types of different sizes


When assigning a function return type to a numeric variable, to protect against future changes to the function

 Notice a pattern here? Mimicking existing language and library names and behavior is a powerful technique for
simplifying learning and usage, but it also requires a lot of thought. Augmenting the built-in C++ casts is a walk along a
narrow road; straying comes at a high price. Making something follow the syntactic and semantic rules of the language
implies responsibility. In fact, for novices, there might not be any difference at all between built-in casts and functions
that look like casts, so if the behavior is incorrect it can wreak havoc. numeric_cast has the similar syntax and
semantics of static_cast, dynamic_cast, and reinterpret_cast. If it looks and behaves like a cast, it is a cast, and this
particular one is a nice addition to that family.







lexical_cast

 Header: "boost/lexical_cast.hpp"

 Lexical conversions are performed in virtually all applications. We convert strings to numeric values and vice versa.
Many user-defined types can be converted to strings or created from strings. It is all too common to write the code
for these conversions each time you need it, which suggests that it is very much suited for a reusable implementation.
That's lexical_cast's purpose. Think of lexical_cast as using a std::stringstream as an interpreter between the string and
other representation of a value. That means that it will work for any source with an appropriate output operator<<
and any target with an appropriate operator<<. That's true for all of the built-in types and many user-defined types
(UDTs).

 Usage

 lexical_cast makes a conversion between types look like any other type-converting cast. Of course, there must be a
conversion function somewhere to make it work, but conceptually, it can be thought of as a cast. Rather than calling
one of a number of conversion routines, or even coding the conversion locally, lexical_cast does that job for any types
that meet its requirements. The source type must be OutputStreamable and the destination type must be
InputStreamable. In addition, both types need to be CopyConstructible, and the target also DefaultConstructible and
Assignable. OutputStreamable means that there's an operator<< defined for the type, and InputStreamable mandates
an operator>>. This is true for many types, including the built-in types and the string classes from the Standard
Library. To use lexical_cast, include "boost/lexical_cast.hpp".

 Putting lexical_cast to Work

 I won't bore you by producing conversion code manually to show how much code lexical_cast saves you, because
I'm sure you've written these conversions yourself, and quite probably done so more than once. Instead, the example
just uses lexical_cast for a number of common (lexical) type conversions.

#include <iostream>

#include <string>

#include "boost/lexical_cast.hpp"

int main() {

  // string to int

  std::string s="42";

  int i=boost::lexical_cast<int>(s);

  // float to string

  float f=3.14151;

  s=boost::lexical_cast<std::string>(f);

  // literal to double

  double d=boost::lexical_cast<double>("2.52");

  // Failed conversion

  s="Not an int";

  try {

    i=boost::lexical_cast<int>(s);

  }

  catch(boost::bad_lexical_cast& e) {

    // The lexical_cast above will fail,

    // and we'll end up here

  }

}

This example shows only a few of many scenarios where lexical conversion are performed, and I think you'll agree
that it usually takes a few more lines of code than this to get the job done. Whenever there's uncertainty that the
conversion is valid, the lexical_cast should be protected by a TRy/catch block, as you see in the preceding example.
You'll note that there is no way of controlling the formatting of these conversions; if you need that level of control, use
std::stringstream!

 If you were to manually convert between types, you'd need to handle the conversions and possible failures in different
ways for different types. This is not only inconvenient; it also stands in the way of any attempt to perform the
conversions in generic code. We'll see how lexical_cast can help with that in just a moment.

 The conversions in the example are fairly simple to do by hand, and although lexical_cast makes it look that much
simpler, there's a chance that you missed the beauty and elegance of this cast. But it's there. Consider again the simple
requirements that need to be fulfilled for any class to work with lexical_cast. Think about the fact that a conversion
can be done in one line for all of those classes meeting the requirements. Combine this with the fact that the
implementation relies on the Standard Library's stringstream to do the grunt work,[15] and you can see that
lexical_cast is more than a convenient way of performing lexical conversions; it's also a display of the art of
programming in C++.

[15] Actually, there are optimizations that avoid the overhead of using std::stringstream for some conversions. Indeed,
you can customize its behavior for your own types, if necessary.

 Generic Programming with lexical_cast

 As a simple example of using lexical_cast for solving generic programming tasks, consider what it would take to
create a to_string function. The function would accept any type of argument (adhering to certain requirements, of
course) and return a string representing the value. Users of the Standard Library would no doubt be able to do this in
a few lines of code, with the help of std::stringstream. In this case, we'll just use lexical_cast for most of the
implementation, with just a forwarding function and some error handling.

#include <iostream>

#include <string>

#include "boost/lexical_cast.hpp"

template <typename T> std::string to_string(const T& arg) {

  try {

    return boost::lexical_cast<std::string>(arg);

  }

  catch(boost::bad_lexical_cast& e) {

    return "";

  }

}

int main() {

  std::string s=to_string(412);

  s=to_string(2.357);

}

This handy function is not only easy to implement, it also adds value, elegantly enabled by virtue of lexical_cast.

 Enabling Classes for Use with lexical_cast

 Because lexical_cast only requires that operator<< and operator>> be suitably defined for the types it operates on,
it's straightforward to add support for lexical conversions to user-defined types. A simple UDT that can be both the
target and source when used with lexical_cast might look like this:

class lexical_castable {

public:

  lexical_castable() {};

  lexical_castable(const std::string s) : s_(s) {};

  friend std::ostream operator<<

    (std::ostream& o, const lexical_castable& le);

  friend std::istream operator>>

    (std::istream& i, lexical_castable& le);

private:

  virtual void print_(std::ostream& o) const {

    o << s_ <<"\n";

  }

  virtual void read_(std::istream& i) const {

    i >> s_;

  }

  std::string s_;

};

std::ostream operator<<(std::ostream& o,

  const lexical_castable& le) {

  le.print_(o);

  return o;

}

std::istream operator>>(std::istream& i, lexical_castable& le) {

  le.read_(i);

  return i;

}

The lexical_castable class can now be used like so:

int main(int argc, char* argv[]) {

  lexical_castable le;

  std::cin >> le;

  try {

    int i = boost::lexical_cast<int>(le);

  }

  catch(boost::bad_lexical_cast&) {

     std::cout << "You were supposed to enter a number!\n";

  }

}

Of course, the input and output operators allow the class to be used with other streams as well. If you're using
IOStreams from the Standard Library, or another library that uses operator<< and operator>>, you probably have
many classes that are ready for lexical_cast in place. These do not have to be modified at all. Just lexically cast them!

 Summary

 lexical_cast is a reusable and reasonably efficient tool for lexical conversions, those between string and other types.
With its combination of functionality and elegance, it is a great example of what a creative programmer can do.[16]
Rather than implementing small conversion functions whenever the need arises, or worse, implementing that logic
directly in other functions, a generic tool like lexical_cast should be used. It helps make the code clearer and allows
programmers to focus on solving the problem at hand.

[16] I've always feltpresumptuously, I knowthat we, The Programmers, work simultaneously with mathematics,
physics, engineering, architecture, sculpturing, and a few other arts and disciplines. This is daunting, but also endlessly
rewarding.

 When to use lexical_cast:


 For conversions from string types to numeric types


For conversions from numeric types to string types


For all lexical conversions that are supported by your user-defined types





Conversion Summary
 In this chapter, you have learned about the Boost.Conversion library, starting with polymorphic_cast. The rationale
for polymorphic_cast is code clarity and safetyclarity, because it gives us increased flexibility in stating our intent in
code, and safety, because it's safer than its companion dynamic_cast<T*>, because tests of the resulting pointer are
easily forgotten.

 You then looked at safe optimizations, using polymorphic_downcast, which adds dynamic_cast-like safety in debug
builds, but uses static_cast for the conversion. This makes it safer than static_cast alone.

 numeric_cast helped with some of the thorny issues related to numeric conversions. Again, code clarity was
improved and we stayed clear of both undefined and implementation-defined behavior.

 Finally, there was lexical_cast. No more repetitive conversion functions. That's why it's been proposed for inclusion
in the next revision of the C++ Standard Library. It is a tool that is very handy for converting different streamable data
types.

 If you were to read the implementation for these casts, you'd agree that none of them are very complicated. Still, it
took insight, vision, and knowledge to recognize the need for them and to implement them correctly, portably, and
efficiently. Not all people realize that there is something amiss when using dynamic_cast. Not many know the
intricacies of integral type conversion and promotion. The Boost conversion "casts" include all of that knowledge and
are well crafted and tested; they are excellent candidates for your use.



Library 3. Utility



How Does the Utility Library Improve Your Programs?


 Compile time assertions with BOOST_STATIC_ASSERT


Safe destruction with checked_delete and checked_array_delete


Prohibition of copying with noncopyable


Retrieval of object addresses when operator& is overloaded through addressof


Controlled participation of overloads and specializations with enable_if and disable_if

 There are some utilities that just don't constitute a library in their own right, and are therefore grouped together with
other entities. This is what Boost.Utility is, a collection of useful tools with no better home. They are useful enough to
warrant inclusion in Boost, yet they are too small to deserve their own library. This chapter covers some of
Boost.Utility's most fundamental and widely applicable tools.

 We'll start with BOOST_STATIC_ASSERT, a facility for asserting integral constant expressions at compile time.
Then, we'll see what happens when you delete an object through a pointer to an incomplete typethat is, when the
layout of the object being destroyed is unknown. checked_delete makes that discussion more interesting. We'll also
see how noncopyable prevents a class from ever being copied, which is arguably the most important topic of this
chapter. Then, we'll check out addressof, which defeats the ill doings of menacing programmers[1] who overload
operator&. Finally, we shall examine enable_if, which is really useful for controlling whether function overloads and
template specializations are considered during name lookup or not.

[1] If you feel that I'm out of line here, please send me your most compelling use cases for overloading operator&.





BOOST_STATIC_ASSERT

 Header: "boost/static_assert.hpp"

 Performing assertions at runtime is something that you probably do regularly, and for good reasons. It is an excellent
way of testing preconditions, postconditions, and invariants. There are many variations for performing runtime
assertions, but how do you assert at compile time? Of course, the only way to do that is to have the compiler generate
an error, and while that is quite trivial (I've inadvertently done it many thousand times), it's not obvious how to get
meaningful information into the error message. Furthermore, even if you find a way on one compiler, it's a lot harder to
do it portably. This is the rationale for BOOST_STATIC_ASSERT. It can be used at different scopes, as we shall
see.

 Usage

 To start using static assertions, include the header "boost/static_assert.hpp". This header defines the macro[2]
BOOST_STATIC_ASSERT. For the first demonstration of its usage, we'll see how it is used at class scope.
Consider a parameterized class that requires that the types with which it is instantiated are of integral type. We'd
rather not provide specializations for all of those types, so what we need is to assert, at compile time, that whatever
type our class is being parameterized on is indeed an integral type. Now, we're going to get a little bit ahead of
ourselves by using another Boost library for testing the typeBoost.Type_traits. We'll use a predicate called is_integral,
which performs a compile time evaluation of its argument and, as you might guess from its name, indicates whether
that type is an integral type.

[2] Yes, it's a macro. They too can be useful, you know.

#include <iostream>

#include "boost/type_traits.hpp"

#include "boost/static_assert.hpp"

template <typename T> class only_compatible_with_integral_types {

  BOOST_STATIC_ASSERT(boost::is_integral<T>::value);

};

With this assertion, trying to instantiate the class only_compatible_with_integral_types with a type that is not an
integral type causes a failure at compile time. The output depends on the compiler, but it is surprisingly consistent on
most compilers.

 Suppose we tried to instantiate the class like this:

only_compatible_with_integral_types<double> test2;

The compiler output will look something like this:

Error: use of undefined type

  'boost::STATIC_ASSERTION_FAILURE<false>'

At class scope, you can ensure certain requirements for the class: For a template like this, the parameterizing type is
an obvious example. You could also use assertions for other assumptions that the class makes, such as the size of
certain types and such.

 BOOST_STATIC_ASSERT at Function Scope

 BOOST_STATIC_ASSERT can also be used at function scope. For example, consider a function that is
parameterized on a non-type template parameterlet's assume an intand the parameter can accept values between 1
and 10. Rather than asserting that this precondition holds at runtime, we can enforce it at compile time using a static
assertion.

template <int i> void accepts_values_between_1_and_10() {

  BOOST_STATIC_ASSERT(i>=1 && i<=10);

}

Users of this function can never instantiate it with values outside of the permitted range. The requirement on the
expression in the assertion is, of course, that it be purely a compile time expressionthat is, the arguments and
operators in the expression must all be known to the compiler. BOOST_STATIC_ASSERT is not, by any means,
confined to use in parameterized functions; we can just as easily test requirements in any function. For example, if a
function makes platform dependent assumptions, asserting that these hold is often necessary.

void expects_ints_to_be_4_bytes() {

  BOOST_STATIC_ASSERT(sizeof(int)==4);

}

Summary

 Static assertions like the ones you've seen here are becoming as common in C++ as their runtime companion assert.
This is, at least in part, due to the "metaprogramming revolution," where much of a program's computation is
performed at compile time. The only way to express compile time assertions is by having the compiler issue an error.
To make the assertions usable, the error messages must convey the necessary information, but that's hard to do
portably (in fact, it's hard to do at all). This is what BOOST_STATIC_ASSERT does, by providing consistent output
for compile time assertions on a wide range of compilers. It can be used at namespace, class, and function, scope.

 Use BOOST_STATIC_ASSERT when:


 A condition can be expressed at compile time


Requirements on types are expressible at compile time


You need to assert a relation of two or more constant integral values







checked_delete

 Header: "boost/checked_delete.hpp"

 When deleting an object through a pointer, the result is typically dependent on whether the type being deleted is
known at the time of the deletion. There are hardly ever compiler warnings when delete-ing a pointer to an incomplete
type, but it can cause all kinds of trouble, because the destructor may not be invoked. This, in turn, means that
cleanup code won't be performed. checked_delete is in effect a static assertion that the class type is known upon
destruction, enforcing the constraint that the destructor will be called.

 Usage

 checked_delete is a template function residing in the boost namespace. It is used for deleting dynamically allocated
objectsand there's a companion used for dynamically allocated arrays called checked_array_delete. The functions
accept one argument; the pointer or array to be deleted. Both of these functions require that the types they delete be
known at the time they are destroyed (that is, when they are passed to the functions). To use the functions, include the
header "boost/checked_delete.hpp". When utilizing the functions, simply call them where you would otherwise call
delete. The following program forward declares a class, some_class, that is never defined. Any compiler would allow
a pointer to some_class to be deleted (more on this later), but checked_delete does not compile until a definition of
some_class is available.

#include "boost/checked_delete.hpp"

class some_class;

some_class* create() {

  return (some_class*)0;

}

int main() {

  some_class* p=create();

  boost::checked_delete(p2);

}

When trying to compile this program, the instantiation of the function checked_delete<some_class> fails because
some_class is an incomplete type. Your compiler will say something like this:

checked_delete.hpp: In function 'void

boost::checked_delete(T*) [with T = some_class]':

checked_sample.cpp:11:   instantiated from here

boost/checked_delete.hpp:34: error: invalid application of 'sizeof' to an incomplete

type

boost/checked_delete.hpp:34: error: creating array with

size zero ('-1')

boost/checked_delete.hpp:35: error: invalid application of

'sizeof' to an incomplete type

boost/checked_delete.hpp:35: error: creating array with

size zero ('-1')

boost/checked_delete.hpp:32: warning: 'x' has incomplete type

The first part of the preceding error message clearly spells out the problem: that checked_delete has encountered an
incomplete type. But when and how are incomplete types problems in our code? The following section talks about
exactly that.

 What's the Problem, Anyway?

 Before we really start enjoying the benefits of checked_delete, let's make sure that we understand the problem in full.
If you try to delete a pointer to an incomplete type[3] with a non-trivial destructor,[4] the result is undefined behavior.
How can that come about? Let's look at an example.

[3] An incomplete type is one that has been declared but not defined.

[4] That's Standardese for saying that the class, one or more of its direct bases, or one or more of its non-static data
members has a user-defined destructor.

// deleter.h

class to_be_deleted;

class deleter { 

public:

  void delete_it(to_be_deleted* p);

};

// deleter.cpp

#include "deleter.h"

void deleter::delete_it(to_be_deleted* p) {

  delete p;

}

// to_be_deleted.h

#include <iostream>

class to_be_deleted

{

public:

  ~to_be_deleted() {

    std::cout << 

      "I'd like to say important things here, please.";

  }

};

// Test application

#include "deleter.h"

#include "to_be_deleted.h"

int main() {

  to_be_deleted* p=new to_be_deleted;

  deleter d;

  d.delete_it(p);

}

The preceding code tries to delete a pointer to an incomplete type, to_be_deleted, resulting in undefined behavior.
Notice that to_be_deleted is forward declared in deleter.h; that deleter.cpp includes deleter.h and not
to_be_deleted.h: and that to_be_deleted.h defines a non-trivial destructor for to_be_deleted. It can be easy to get
into this kind of trouble, especially when using smart pointers. What we need is a way to ensure that a type is
complete when calling delete, and that's just what checked_delete does.

 checked_delete to the Rescue

 The previous example shows that it's feasible to get into trouble when deleting incomplete types without realizing it,
and not all compilers even emit a warning when it happens. When writing generic code, avoiding that situation is
imperative. To rewrite the example to make use of checked_delete, you just need to change the delete p to
checked_delete(p).

void deleter::do_it(to_be_deleted* p) {

  boost::checked_delete(p);

}

checked_delete is basically a static assertion that the class type is complete, which is accomplished like so:

template< typename T > inline void checked_delete(T * x) {

  typedef char type_must_be_complete[sizeof(T)];

  delete x;

}

The idea here is to create an array of char, with the number of array elements being equal to the size of T. If
checked_delete is instantiated with a type T that is incomplete, the compilation fails, because sizeof(T) returns 0, and
it's illegal to create an (automatic) array with 0 elements. You could also have used BOOST_STATIC_ASSERT for
asserting this.

BOOST_STATIC_ASSERT(sizeof(T));

This utility is very handy when writing templates that must ensure that they are instantiated only with complete types.
There is also a corresponding "checked deleter" for arrays, called checked_array_delete, which works just like
checked_delete.

to_be_deleted* p=new to_be_deleted[10];

boost::checked_array_delete(p);

Summary

 When a dynamically allocated object is deleted, it is imperative that its destructor is called. If the type is
incompletethat is, it has been declared but not definedthe destructor will probably never be called. This is a potentially
disastrous situation, so avoiding it is paramount. For class templates and functions, the risk is greater than for other
types, because there's no telling in advance which types will be used with it. When using checked_delete and
checked_array_delete, the problem of deleting incomplete types is removed. There is no runtime overhead compared
to a direct call to delete, so the extra safety brought forth by checked_delete comes virtually without a price.

 Use checked_delete when you need to ensure that types are complete when calling delete.







noncopyable

 Header: "boost/utility.hpp"

 The compiler is often a very good friend of the programmer, but not always. One example of its friendliness is the
way that it automatically provides copy construction and assignment for our classes, should we decide not to do so
ourselves. This can lead to some unpleasant surprises, if the class isn't meant to be copied (or assigned to) in the first
place. When that's the case, we need to tell clients of this class explicitly that copy construction and assignment are
prohibited. I'm not talking about comments in the code, but about denying access to the copy constructor and copy
assignment operator. Fortunately, the compiler-generated copy constructor and copy assignment operator are not
usable when the class has bases or data members that aren't copyable or assignable. boost::noncopyable works by
prohibiting access to its copy constructor and assignment operator and then being used as a base class.

 Usage

 To make use of boost::noncopyable, have the noncopyable classes derive privately from it. Although public
inheritance works, too, this is a bad practice. Public inheritance says IS-A (denoting that the derived class also IS-A
base) to people reading the class declaration, but stating that a class IS-A noncopyable seems a bit far fetched.
Include "boost/utility.hpp" when deriving from noncopyable.

#include "boost/utility.hpp"

class please_dont_make_copies : boost::noncopyable {};

int main() {

  please_dont_make_copies d1;

  please_dont_make_copies d2(d1);

  please_dont_make_copies d3;

  d3=d1;

  }

The preceding example does not compile. The attempted copy construction of d2 fails because the copy constructor
of noncopyable is private. The attempted assignment of d1 to d3 fails because the copy assignment operator of
noncopyable is private. The compiler should give you something similar to the following output:

noncopyable.hpp: In copy constructor

' please_dont_make_copies::please_dont_make_copies (const please_dont_make_copies&)':

boost/noncopyable.hpp:27: error: '

  boost::noncopyable::noncopyable(const boost::noncopyable&)' is

private

noncopyable.cpp:8: error: within this context

boost/noncopyable.hpp: In member function 'please_dont_make_copies&

  please_dont_make_copies::operator=(const please_dont_make_copies&)':

boost/noncopyable.hpp:28: error: 'const boost::noncopyable&

  boost::noncopyable::operator=(const boost::noncopyable&)' is private

noncopyable.cpp:10: error: within this context

We'll examine how this works in the following sections. It's clear that copying an assignment is prohibited when
deriving from noncopyable. This can also be achieved by defining the copy constructor and copy assignment operator
privatelylet's see how to do that.

 Making Classes Noncopyable

 Consider again the class please_dont_make_copies, which, for some reason, should never be copied.

class please_dont_make_copies {

public:

  void do_stuff() {

    std::cout <<

      "Dear client, would you please refrain from copying me?";

  }

};

Because the compiler generates a copy constructor and an assignment operator, there's nothing about this class that
prohibits copying or assignment.

please_dont_make_copies p1;

please_dont_make_copies p2(p1);

please_dont_make_copies p3;

p3=p2;

We could fix this mess by declaring the copy constructor and copy assignment operator private or protected, and by
adding a default constructor (which would no longer be generated by the compiler).

class please_dont_make_copies {

public:

  please_dont_make_copies() {}

  void do_stuff() {

    std::cout << 

      "Dear client, would you please refrain from copying me?";

  }

private:

  please_dont_make_copies(const please_dont_make_copies&);

  please_dont_make_copies& operator=

    (const please_dont_make_copies&);

};

That works very well, but it isn't as immediately apparent to please_dont_make_copies' clients that it is noncopyable.
Seeing noncopyable instead makes the class more obviously noncopyable with less typing.

 Using noncopyable

 The class boost::noncopyable is intended to be used as a private base class, which effectively turns off copy
construction and copy assignment operations. Using the previous example, here's how the code would look when
using noncopyable:

#include "boost/utility.hpp"

class please_dont_make_copies : boost::noncopyable {

public:

  void do_stuff() {

    std::cout << "Dear client, you just cannot copy me!";

 }

};

There's no need to declare the copy constructor or copy assignment operator. Because we've derived from
noncopyable, the compiler won't generate them either, which disables copying and copy assignment. Terseness can
lend clarity, especially for such basic and distinct concepts such as this. For a client reading the code, it is immediately
apparent that this class cannot be copied, or copy assigned, because boost::noncopyable appears at the very start of
the class definition. One last note: Do you recall that the default access control for classes is private? That means that
inheritance is private by default, too. You could make this fact even more obvious by spelling it out like this:

class please_dont_make_copies : private boost::noncopyable {

It all depends on the audience; some programmers find such redundant information annoying and distracting, whereas
others appreciate the clarification. It's up to you to decide which way is right for your classes, and your programmers.
Either way, using noncopyable is definitely better than "forgetting" the copy constructor and the copy assignment
operator, and it's also clearer than privately declaring them.

 Remember the Big Three

 As we have seen, noncopyable provides a convenient way of disabling copying and copy assignment for a class. But
when do we need to do that? Which are the circumstances that demand a user-defined copy constructor or copy
assignment operator in the first place? There is a general answer to this question, one that just about always is correct:
Whenever you need to define one of the destructor, the copy constructor, or the copy assignment operator, you also
need to define the remaining two.[5] These three interoperate in important ways, and when one exists, the others
typically must, too. Let's assume that one of your classes has a member that is a pointer. You have defined a
destructor for proper deallocation, but you haven't bothered defining a copy constructor or a copy assignment
operator. This means that there are at least two potential defects in your code, which are easy to trigger.

[5] The name Law of the Big Three comes from C++ FAQs (see [2] in the Bibliography for details).

class full_of_errors {

  int* value_;

public:

  full_of_errors() {

    value_=new int(13);

  }

 ~full_of_errors() {

    delete value_;

  }

};

Using this class, there are at least three ways of producing errors that aren't obvious if one neglects to consider the
copy constructor and the assignment operator that the compiler has graciously augmented the class with.

full_of_errors f1;

full_of_errors f2(f1);

full_of_errors f3=f2;

full_of_errors f4;

f4=f3;

Note that the two equivalent ways of invoking the copy constructor here are on the second and third lines. They both
call the synthesized copy constructor, although the syntax is different. The final error is on the last line, where the copy
assignment operator makes sure that the same pointer is used and deleted by at least two instances of full_of_errors.
Doing things correctly, we would have realized the need for copy assignment and copy construction right away, when
we defined our destructor. Here's what should have been done:

  class not_full_of_errors {

    int* value_;

  public:

    not_full_of_errors() {

      value_=new int(13);

    }

    not_full_of_errors(const not_full_of_errors& other) :

      value_(new int(*other.value_)) {}

    not_full_of_errors& operator=

      (const not_full_of_errors& other) {

      *value_=*other.value_;

      return *this;

    }

    ~not_full_of_errors() {

      delete value_;

    }

};

So, whenever one of the big threecopy constructor, (virtual) destructor, and copy assignment operatoris manually
defined in a class, think long and hard before deciding that the remaining two are unnecessary. And, remember to use
boost::noncopyable if there is to be no copying at all!

 Summary

 There are many types for which we need to prohibit copying and copy assignment. However, declaring the copy
constructor and copy assignment operator private is often neglected for such types, and responsibility for knowing
that copying doesn't make sense is transferred to clients of the type. Even when types ensure that they cannot be
copied or assigned, using private copy constructors and copy assignment operators, it isn't always clear to the client
that this is the case. Of course, the compiler kindly informs those who try, but it may not be apparent where the error
is coming from. Either way, the best we can do is to be explicit about it, and deriving from noncopyable makes a clear
statement. It is immediately in view when scanning the declaration of the type. When compiling, an error message
almost certainly includes the name noncopyable. And it also saves some typing, which is a killer argument for some.

 Use noncopyable when:


 Copying and copy assignment of types is not allowed


Prohibition of copying and assignment should be as explicit as possible







addressof

 Header: "boost/utility.hpp"

 When taking the address of a variable, we typically depend on the returned value to be, well, the address of the
variable. However, it's technically possible to overload operator&, which means that evildoers may be on a mission to
wreak havoc on your address-dependent code. boost::addressof is provided to get the address anyway, regardless of
potential uses and misuses of operator overloading. By using some clever internal machinery, the template function
addressof ensures that it gets to the actual object and its address.

 Usage

 To always be sure to get the real address of an object, use boost::addressof. It is defined in "boost/utility.hpp". It is
used where operator& would otherwise be used, and it accepts an argument that is a reference to the type whose
address should be taken.

#include "boost/utility.hpp"

class some_class {};

int main() {

  some_class s;

  some_class* p=boost::addressof(s);

}

Before seeing more details on how to use addressof, it is helpful to understand why and how operator& may not
actually return the address of an object.

 Quick Lesson for Evildoers

 If you really, really, really need to overload operator&, or just want to experiment with the potential uses of operator
overloading, it's actually quite easy. When overloading operator&, the semantics are always different from what most
users (and functions!) expect, so don't do it just to be cute; do it for a very good reason or not at all. That said, here's
a code-breaker for you:

class codebreaker {

public:

  int operator&() const {

    return 13;

  }

};

With this class, anyone who tries to take the address of an instance of codebreaker is handed the magical number 13.

template <typename T> void print_address(const T& t) {

  std::cout << "Address: " << (&t) << '\n';

}

int main() {

  codebreaker c;

  print_address(c);

}

It's not hard to do this, but are there good arguments for ever doing it in real code? Probably not, because it cannot
be made safe except when using local classes. The reason for this is that while it is legal to take the address of an
incomplete type, it is undefined behavior to do so on an incomplete class with a user-defined operator&. Because we
cannot guarantee that this won't happen, we're better off not overloading operator&.

 Quick Remedy for Others

 Even when operator& is supplied by the class, it is possible to get to the real address of instances of the class.
addressof performs some clever work[6] behind the scenes to get to the bottom of the address issue, regardless of
any operator& chicanery. If you adjust the function (print_address) to make use of addressof, you'll get what we
came here for:

[6] Also known as an ingenious hack.

template <typename T> void print_address(const T& t) {

  std::cout << "&t: " << (&t) << '\n';

  std::cout << "addressof(t): " << boost::addressof(t) << '\n';

}

When invoked, the function gives this output (or similar, because the exact address differs depending upon your
system).

&t: 13

addressof(t): 0012FECB13

That's more like it! If there are scenarios where you know, or suspect, that operator& is provided by a class but you
need to be really sure that you get the actual address (which is unlikely for an overloaded operator& or why else
would it be overloaded in the first place?), use addressof.

 Summary

 There are not many potent arguments for overloading operator&,[7] but because it is possible, some people do it
anyway. When writing code that relies on retrieving the actual address of objects, addressof can help by ensuring that
the real address is returned. When writing generic code, there is no way of telling which types will be operated upon,
so if the address of parameterized types needs to be taken, use addressof.

[7] Custom hardware device drivers notwithstanding.

 Use addressof when you must retrieve the actual address of an object, regardless of the semantics for operator&.







enable_if

 Header: "boost/utility/enable_if.hpp"

 Sometimes, we wish to control whether a certain function, or class template specialization, can take part in the set of
available overloads/specializations for overload resolution. For example, consider an overloaded function where one
version is an ordinary function taking an int argument, and the other is a templated version that requires that the
argument of type T has a nested type called type. They might look like this:

void some_func(int i) {

  std::cout << "void some_func(" << i << ")\n";

}

template <typename T> void some_func(T t) {

  typename T::type variable_of_nested_type;

  std::cout << 

    "template <typename T> void some_func(" << t << ")\n";

}

Now, imagine what happens when you call some_func somewhere in your code. If the type of the argument is int, the
first version is called. Assuming that the type is something other than int, the second (templated) version is called.

 This is fine, as long as that type has a nested type named type, but if it doesn't, this code does not compile. Is this
really a problem? Well, consider what happens when another integral type is used, like short, or char, or unsigned
long.

#include <iostream>

void some_func(int i) {

  std::cout << "void some_func(" << i << ")\n";

}

template <typename T> void some_func(T t) {

  typename T::type variable_of_nested_type;

  std::cout << 

    "template <typename T> void some_func(" << t << ")\n";

}

int main() {

  int i=12;

  short s=12;

  some_func(i);

  some_func(s);

}

When compiling this program, you will get something like the following output from the frustrated compiler:

enable_if_sample1.cpp: In function 'void some_func(T)

  [with T = short int]':

enable_if_sample1.cpp:17:   instantiated from here

enable_if_sample1.cpp:8: error:

  'short int' is not a class, struct, or union type

Compilation exited abnormally with code 1 at Sat Mar 06 14:30:08

There it is. The template version of some_func has been chosen as the best overload, but the code in that version is
not valid for the type short. How could we have avoided this? Well, we would have liked to only enable the template
version of some_func for types with a nested type named type, and to ignore it for those without it. We can do that.
The easiest way, which is not always an option in real life, is to change the return type of the template version like so:

template <typename T> typename T::type* some_func(T t) {

  typename T::type variable_of_nested_type;

  std::cout <<

    "template <typename T> void some_func(" << t << ")\n";

  return 0;

}

If you haven't yet studied SFINAE (substitution failure is not an error),[8] chances are that you have a perplexed look
on your face right now. When compiling with this update, our example compiles cleanly. The short is promoted to int,
and the first version is called. The reason for this surprising behavior is that the template version of some_func isn't
included in the overload resolution set anymore. It's excluded because when the compiler sees that the return type of
the function requires that type be a nested type of the template type T (lots of types here), it knows that short doesn't
fit the bill, so it removes the function template from the overload resolution set. This is what Daveed Vandevorde and
Nicolai Josuttis have taught us to refer to as SFINAE, and it means that rather than producing a compiler error, that
function simply is not considered as a valid overload for the type in question. If the type has such a nested type,
though, it will be part of the overload set.

[8] See [3] in the Bibliography.

class some_class {

public:

  typedef int type;

};

int main() {

  int i=12;

  short s=12;

  some_func(i);

  some_func(s);

  some_func(some_class());

}

The output when running this program is as follows:

void some_func(12)

void some_func(12)

template <typename T> void some_func(T t)

This works, but it's not a pretty sight. In this scenario, we had the luxury of playing with a void return type, which we
could use for other purposes. If that hadn't been the case, we could have added another argument to the function and
given it a default value.

template <typename T>

  void some_func(T t,typename T::type* p=0) {

  typename T::type variable_of_nested_type;   

  std::cout << "template <typename T> void some_func(T t)\n";

}

This version also uses SFINAE to disqualify itself from use with invalid types. The problem with both of these
solutions is that they're really ugly, we have made them a part of the public interface, and they only work in some
scenarios. Boost offers a much cleaner solution, which is both syntactically nicer and offers a much wider range of
functionality than our earlier ad hoc solutions.

 Usage

 To use enable_if and disable_if, include "boost/utility/enable_if.hpp". For the first example, we'll disable the second
version of some_func if the type of the argument is integral. Type information such as whether a type is integral is
available in another Boost library, Boost.Type_traits. The enable_if and disable_if templates both accept a predicate
controlling whether to enable or disable the function, respectively.

#include <iostream>

#include "boost/utility/enable_if.hpp"

#include "boost/type_traits.hpp"

void some_func(int i) {

  std::cout << "void some_func(" << i << ")\n";

}

template <typename T> void some_func(

  T t,typename boost::disable_if<

    boost::is_integral<T> >::type* p=0) {

    typename T::type variable_of_nested_type;

    std::cout << "template <typename T> void some_func(T t)\n";

}

Although this is similar to what we did before, it's expressing something that we couldn't have done as easily using our
direct approach, and this also has the advantage of documenting important information about the function in its
signature. When reading this, it is clear that the function requires that the type T is not an integral type. It would be
even better if we could enable it (and document it accordingly) only for types with a nested type, type, and we can do
that if we use another library, Boost.Mpl.[9] Check this out:

[9] Boost.Mpl is beyond the scope of this book. Visit http://www.boost.org for more information on Mpl. Also, get
your hands on David Abrahams's and Aleksey Gurtovoy's book, C++ Template Metaprogramming!

#include <iostream>

#include "boost/utility/enable_if.hpp"

#include "boost/type_traits.hpp"

#include "boost/mpl/has_xxx.hpp"

BOOST_MPL_HAS_XXX_TRAIT_DEF(type)

void some_func(int i) {

  std::cout << "void some_func(" << i << ")\n";

}

template <typename T> void some_func(T t,

  typename boost::enable_if<has_type<T> >::type* p=0) {

    typename T::type variable_of_nested_type;   

    std::cout << "template <typename T> void some_func(T t)\n";

}

This is very cool indeed! We are now disabling the template version of some_func when there is no nested type, type,
in T, and we explicitly document that this is a requirement for the function in its signature. The trick here is to use a
very nifty feature of Boost.Mpl that can test whether a certain nested type (or typedef) exists in an arbitrary type T.
Using the macro invocation, BOOST_MPL_HAS_XXX_TRAIT_DEF(type), we define a new trait called has_type,
which we use in the function some_func as the predicate for enable_if. If the predicate yields TRue, the function is part
of the overload set; if it yields false, it is excluded. 

It's also possible to wrap the return type rather than add an extra (defaulted) argument. The equivalent of our latest
and greatest some_func, but using enable_if in the return type, looks like this.

template <typename T> typename

boost::enable_if<has_type<T>,void>::type

  some_func(T t) {

    typename T::type variable_of_nested_type;

    std::cout << "template <typename T> void some_func(T t)\n";

}

If you need to return the type that you need to enable or disable on, using enable_if and disable_if on the return type
makes more sense than adding a defaulted argument. Also, there is a chance that someone actually provides a value
instead of that default argument, which breaks the code. Sometimes, class template specializations need to be enabled
or disabled, and enable_if/disable_if work for those cases too. The difference is that for class templates, we must give
the primary template some special treatmentan additional template parameter. Consider a class template with a
member function max that returns an int:

template <typename T> class some_class {

public:

  int max() const {

    std::cout << "some_class::max() for the primary template\n";

    return std::numeric_limits<int>::max();

  }

};

Suppose we decide that for all arithmetic types (integral types and floating point types), there should be a
specialization available that returns max as the maximum value that the type can hold. We'll thus need
std::numeric_limits for the template type T, and we want all other types to use the primary template. To make this
work, we must add a template parameter to the primary template, which has a default type of void (this means that
users don't have to deal explicitly with this type). This results in the following primary template:

template <typename T,typename Enable=void> class some_class {

public:

  int max() const {

    std::cout << "some_class::max() for the primary template\n";

    return std::numeric_limits<int>::max();

  }

};

We've now paved the way for providing a more specialized version, to be enabled if the type is arithmetic. That trait is
available via the Boost.Type_traits library. Here's the specialization:

template <typename T> class some_class<T,

  typename boost::enable_if<boost::is_arithmetic<T> >::type> {

public:

  T max() const {

   std::cout << "some_class::max() with an arithmetic type\n";

   return std::numeric_limits<T>::max();

  }

};

This version is only enabled when instantiated with a type that is arithmeticthat is, when the trait is_arithmetic yields
true. This works because boost::enable_if<false>::type is void, matching the primary template specialization. The
following program tests these templates with various types:

#include <iostream>

#include <string>

#include <limits>

#include "boost/utility/enable_if.hpp"

#include "boost/type_traits.hpp"

// Definition of the template some_class omitted

int main() {

  std::cout << "Max for std::string: " <<

    some_class<std::string>().max() << '\n';

  std::cout << "Max for void: " << 

    some_class<void>().max() << '\n';

  std::cout << "Max for short: " << 

    some_class<short>().max() << '\n';

  std::cout << "Max for int: " << 

    some_class<int>().max() << '\n';

  std::cout << "Max for long: " << 

    some_class<long>().max() << '\n';

  std::cout << "Max for double: " << 

    some_class<double>().max() << '\n';

}

We'd expect the first two uses of some_class to instantiate the primary template, and the rest to instantiate the
specialization for arithmetic types. Running the program shows that this is indeed the case.

some_class::max() for the primary template

Max for std::string: 2147483647

some_class::max() for the primary template

Max for void: 2147483647

some_class::max() with an arithmetic type

Max for short: 32767

some_class::max() with an arithmetic type

Max for int: 2147483647

some_class::max() with an arithmetic type

Max for long: 2147483647

some_class::max() with an arithmetic type

Max for double: 1.79769e+308

That's all there is to it! Enabling and disabling overloaded functions and template specializations has heretofore
required some tricky programming, which most who read the code would not fully understand. By using enable_if and
disable_if, the solution becomes easier to code and read, and automatically captures the type requirements right in the
declaration. In the preceding example, we use the template enable_if, which expects that the condition has a nested
definition called value. This is true for most metaprogramming-enabled types, but it certainly isn't for integral constant
expressions, for example. When there is no nested type called value, use enable_if_c instead, which expects an
integral constant expression. Naively using the trait is_arithmetic and extracting its value directly, we could have
written the enabling condition for some_class, like so:

template <typename T> class some_class<T,

  typename boost::enable_if_c<

    boost::is_arithmetic<T>::value>::type> {

public:

  T max() const {

   std::cout << "some_class::max() with an arithmetic type\n";

   return std::numeric_limits<T>::max();

  }

};

There is no fundamental difference between enable_if and enable_if_c. It's only the expectation of a nested type value
that sets them apart.

 Summary

 The C++ language feature known as SFINAE is important. Without it, a lot of new code would break existing code,
and some types of function overloads (and template specializations) would simply not be possible. To directly make
use of SFINAE in a controlled way to enable or disable certain functions or types for overload resolution is
complicated. It also makes for hard-to-read code. Using boost::enable_if is an elegant way of simultaneously stating
that an overload is only eligible when certain conditions apply. The same argument holds for disable_if, which is used
to state the oppositethat an overload is not applicable if the condition holds true. There is promise of even more
practical uses of SFINAE, and this library also serves as a very nice introduction of the topic. This chapter has
omitted the lazy versions of enable_if and disable_if (named lazy_enable_if and lazy_disable_if), but I'll give them a
brief mention here. The lazy versions are used to avoid instantiating types that may not be available (depending on the
value of the condition).

 Use enable_if when:


 You need to add or remove a function to the overload set depending on some condition


You need to add or remove a class template specialization from the set of specializations depending on some
condition

http://www.boost.org




Utility Summary
 This chapter has demonstrated some useful utility classes that can greatly simplify our daily life.
BOOST_STATIC_ASSERT asserts at compile time, which is very helpful both for testing preconditions and
enforcing other requirements. For generic programming, checked_delete is extremely helpful in detecting erroneous
usage, which in turn can save a lot of time reading terribly verbose error messages and studying code that seems just
fine. We have also covered addressof, which is a handy tool for getting to the real address of an object, regardless of
what operator& says. We also saw how enable_if and disable_if can control which functions participate in overload
resolution and learned what SFINAE means!

 We talked about the base class noncopyable. By providing both a useful idiom and straightforward usage that
catches the eye of anyone reading the code, it definitely deserves to be used regularly. The omission of a copy
constructor and assignment operator in classes that need them, whether through the need for customized
copying/assignment or the prohibition thereof, is all too common in code, costing lots of frustration, time, and money.

 This is one of the shortest chapters in the book, and I suspect that you've read through it fairly quickly. It pays you
back fast, too, if you start using these utilities right away. There are other utilities in Boost.Utility, which I haven't
covered here. You might want to surf over to the Boost Web site and have a look at the online documentation to see
what other handy tools there would suit you well in your current work.
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How Does the Operators Library Improve Your Programs?


 Provides a complete set of comparison operators


Provides a complete set of arithmetic operators


Provides a complete set of operators for iterators

 Among the operators defined in C++, there are a number of related sets. When you encounter a class with one
operator from one of these sets, you typically expect to find the others, too. For instance, when a class provides
operator==, you expect to find operator!= and probably operator<, operator<=, operator>, and operator>=.
Sometimes, a class only provides operator< in order to define an ordering so objects of that class can be used in
associative containers, but that often leaves class users wanting more. Likewise, a class with value semantics that
provides operator+ but not operator+= or operator- is limiting its potential uses. When you define one operator from
a set for your class, you should typically provide the remaining operators from that set to avoid surprises.
Unfortunately, it is cumbersome and error prone to augment a class with the many operators needed to support
comparisons or arithmetic, and iterator classes must provide certain sets of operators according to the iterator
category they model just to function correctly.

 Besides the tedium of defining the number of operators needed, their semantics must be correct to meet users'
expectations. Otherwise, the class is, for all practical purposes, unusable. We can relieve ourselves from doing it all by
hand, though. As you know, some of the operators are typically implemented in terms of others, such as implementing
operator+ in terms of operator+=, and that suggests that some automation of this task is possible. In fact, that is the
purpose of Boost.Operators. By allowing you to define only a subset of the required comparison or arithmetic
operators, and then defining the rest for you based upon those you provide, Boost.Operators enforces the correct
operator semantics, and reduces your chance of making mistakes.

 An additional value of the Operators library is the explicit naming of concepts that apply for different operations, such
as addable for classes supporting operator+ and operator+=, shiftable for classes supporting operator<< and
operator>>, and so on. This is important for two reasons: A consistent naming scheme aids understanding; and these
concepts, and the classes named after them, can be part of class interfaces, clearly documenting important behaviors.

 How Does Operators Fit with the Standard Library?

 When using the Standard Library containers and algorithms, one typically supplies at least some relational operators
(most commonly operator<) to enable sorting, and thus also storage of the type in sorted, associative containers. A
common practice is to define only the bare minimum of the required operators, which has the unfortunate side effect of
making the class less complete, and harder to understand. On the other hand, when defining a full set of operators,
there is a risk of introducing defective semantics. In these cases, the Operators library helps to make sure that the
classes behave correctly, and adhere to the requirements of both the Standard Library and the users of the type.
Finally, for types that define arithmetic operators, there are a number of operators that are well suited to be
implemented in terms of other operators, and Boost.Operators is of great use here, too.





Operators

 Header: "boost/operators.hpp"

 There are a number of base classes that comprise the Operators library. Each class contributes operators according
to the concept it names. You use them by inheriting from themmultiply inheriting if you need the services of more than
one. Fortunately, there are some composite concepts defined in Operators obviating the need to multiply inherit for
many common cases. The following synopses describe some of the most commonly used Operator classes, the
concepts they represent, and the demands they place on classes derived from them. In some cases, the requirements
for the actual concepts are not the same as the requirements for the concept base classes when using Operators. For
example, the concept addable requires that there be an operator T operator+(const T& lhs,const T& rhs) defined,
but the Operators base class addable instead requires a member function, T operator+=(const T& other). Using this
member function, the base class addable augments the derived class with operator+. THRoughout the synopses, the
concepts are always stated first, followed by the type requirements for classes deriving from them. Rather than
repeating all of the concepts in this library, I have selected a few important ones; you'll find the full reference at 
www.boost.org, of course.

 less_than_comparable

 The less_than_comparable concept requires the following semantics for a type T.

bool operator<(const T&,const T&); 

bool operator>(const T&,const T&); 

bool operator<=(const T&,const T&);

bool operator>=(const T&,const T&);

When deriving from boost::less_than_comparable, the derived class (T) must provide the equivalent of

bool operator<(const T&, const T&); 

Note that the return type need not be exactly bool, but it must be implicitly convertible to bool. For the concept
LessThanComparable found in the C++ Standard, operator< is required, so classes derived from
less_than_comparable need to comply with that requirement. In return, less_than_comparable implements the three
remaining operators in terms of operator<.

 equality_comparable

 The equality_comparable concept requires the following semantics for a type T.

bool operator==(const T&,const T&);

bool operator!=(const T&,const T&);

When deriving from boost::equality_comparable, the derived class (T) must provide the equivalent of

bool operator==(const T&,const T&);

Again, the return type needn't be bool, but it must be a type implicitly convertible to bool. For the concept
EqualityComparable in the C++ Standard, operator== is required, so derived classes from equality_comparable need
to comply with that requirement. The class equality_comparable equips T with bool operator!=(const T&,const T&).

 addable

 The addable concept requires the following semantics for a type T.

T operator+(const T&,const T&);

T operator+=(const T&);

When deriving from boost::addable, the derived class (T) must provide the equivalent of

T operator+=(const T&);

The return type must be implicitly convertible to T. The class addable equips T with T operator+(const T&,const
T&).

 subtractable

 The subtractable concept requires the following semantics for a type T.

T operator-(const T&,const T&);

T operator+=(const T&);

When deriving from boost::subtractable, the derived class (T) must provide the equivalent of

T operator-=(const T&,const T&);

The return type must be implicitly convertible to T. The class subtractable equips T with T operator-(const T&,const
T&).

 orable

 The orable concept requires the following semantics for a type T.

T operator|(const T&,const T&);

T operator|=(const T&,const T&);

When deriving from boost::orable, the derived class (T) must provide the equivalent of

T operator|=(const T&,const T&);

The return type must be implicitly convertible to T. The class orable equips T with T operator|(const T&,const T&).

 andable

 The andable concept requires the following semantics for a type T.

T operator&(const T&,const T&);

T operator&=(const T&,const T&);

When deriving from boost::andable, the derived class (T) must provide the equivalent of

T operator&=(const T&,const T&);

The return type must be implicitly convertible to T. The class andable equips T with T operator&(const T&,const
T&).

 incrementable

 The incrementable concept requires the following semantics for a type T.

T& operator++(T&);

T operator++(T&,int);

When deriving from boost::incrementable, the derived class (T) must provide the equivalent of

T& operator++(T&);

The return type must be implicitly convertible to T. The class incrementable equips T with T operator++(T&,int).

 decrementable

 The decrementable concept requires the following semantics for a type T.

T& operator--(T&);

T operator--(T&,int);

When deriving from boost::decrementable, the derived class (T) must provide the equivalent of

T& operator--(T&);

The return type must be implicitly convertible to T. The class decrementable equips T with T operator--(T&,int).

 equivalent

 The equivalent concept requires the following semantics for a type T.

bool operator<(const T&,const T&);

bool operator==(const T&,const T&);

When deriving from boost::equivalent, the derived class (T) must provide the equivalent of

bool operator<(const T&,const T&);

The return type must be implicitly convertible to bool. The class equivalent equips T with T operator==(const
T&,const T&). Note that equivalence and equality are, by definition, different beasts; two objects that are equivalent
aren't necessarily equal. However, for the purposes of the equivalent concept, they are the same.

 Dereferencing Operators

 Especially useful for iterators, these two concepts, dereferenceable and indexable, cover two cases of dereferencing:
*t, where t is an iterator that supports dereferencing (and all iterators obviously do), and indexing, t[x], where t is a
type that supports indexing through the subscript operator, and x is of an integral type. These two are used together
with a higher-level abstraction, grouped iterator operators, which builds on both these dereferencing operators and
the simple arithmetic operators.

 dereferenceable

 The dereferenceable concept requires the following semantics for a type T, assuming that T is the operand, R is the
reference type, and P is a pointer type (for example, T is an iterator type, R is a reference to the iterator's value_type,
and P is a pointer to the iterator's value_type).

P operator->() const;

R operator*() const;

When deriving from boost::dereferenceable, the derived class (T) must provide the equivalent of

R operator*() const;

Additionally, the unary operator& for R must be implicitly convertible to P. This means that R doesn't actually need to
be the reference typeit can just as well be a proxy class. The class dereferenceable equips T with P operator->()
const.

 indexable

 The indexable concept requires the following semantics for a type T, assuming that T is the operand, R is the
reference type, P is a pointer type, and D is the difference_type (for example, T is an iterator type, R is a reference to
the iterator's value_type, P is a pointer to the iterator's value_type, and D is the difference_type).

R operator[](D) const;

R operator+(const T&,D);

When deriving from boost::indexable, the derived class (T) must provide the equivalent of

R operator+(const T&,D);

The class indexable equips T with R operator[](D) const.

 Composite Arithmetic Operators

 The concepts we've seen thus far represent primitive functionality. However, there are higher level, or composite,
concepts that combine several primitive concepts or even add a primitive concept to another composite concept. For
example, a class is totally_ordered if it is both less_than_comparable and equality_comparable. These groups are
useful both because they reduce the amount of code that needs to be written and that they explicitly name important,
commonly used concepts. Because they merely represent the combination of concepts already covered, these
composite concepts are most easily represented in a table showing the primitive concepts on which they are built. For
example, if a class inherits from totally_ordered, it must implement the operators required for less_than_comparable
(bool operator<(const T&,const T&)) and for equality_comparable (bool operator==(const T&,const T&)).

Composite Concept Constituent Concepts

totally_ordered less_than_comparable

 equality_comparable

additive addable

 subtractable

multiplicative multipliable

 dividable

integer_multiplicative multiplicative

 modable

arithmetic additive

 multiplicative

integer_arithmetic additive

 integer_multiplicative

bitwise andable

 orable

 xorable

unit_steppable incrementable

 decrementable

shiftable left_shiftable

 right_shiftable

ring_operators additive

 multipliable

ordered_ring_operators ring_operators

 totally_ordered

field_operators ring_operators

 dividable

ordered_field_operators field_operators

 totally_ordered

euclidian_ring_operators ring_operators

 dividable

 modable

ordered_ euclidian_ring_operators euclidean_ring_operators

 totally_ordered

http://www.boost.org






Usage
 To start using the Operators library, implement the applicable operator(s) for your class, include
"boost/operators.hpp", and derive from one or more of the Operator base classes (they have the same names as the
concepts they help implement), which all reside in namespace boost. Note that the inheritance doesn't have to be
public; private inheritance works just as well. In this usage section, we look at several examples of using the different
concepts, and also take a good look at how arithmetic and relational operators work, both in C++ and conceptually.
For the first example of usage, we'll define a class, some_class, with an operator<. We decide that the equivalence
relation implied by operator< should be made available through operator==. This can be accomplished by inheriting
from boost::equivalent.

#include <iostream>

#include "boost/operators.hpp"

class some_class : boost::equivalent<some_class> {

  int value_;

public:

  some_class(int value) : value_(value) {}

  bool less_than(const some_class& other) const {

    return value_<other.value_;

  }

};

bool operator<(const some_class& lhs, const some_class& rhs) {

  return lhs.less_than(rhs);

}

int main() {

  some_class s1(12);

  some_class s2(11);

  if (s1==s2) 

    std::cout << "s1==s2\n";

  else

    std::cout << "s1!=s2\n";

}

The operator< is implemented in terms of the member function less_than. The requirement for the equivalent base
class is that operator< be present for the class in question. When deriving from equivalent, we pass the derived
classthat is, some_classas a template parameter. In main, the operator== that is graciously implemented for us by the
Operators library is used. Next, we'll take a look at operator< again, and see what other relations can be expressed
in terms of less than.

 Supporting Comparison Operators

 A relational operator that we commonly implement is less thanthat is, operator<. We do so to support storage in
associative containers and sorting. However, it is exceedingly common to supply only that operator, which can be
confusing to users of the class. For example, most people know that negating the result of operator< yields
operator>=.[1] Less than can also be used to calculate greater than, and so on. So, clients of a class supporting the
less than relation have good cause for expecting that the operators that must also (at least implicitly) be supported are
also part of the class interface. Alas, if we just add the support for operator< and omit the others, the class isn't as
usable as it could, and should, be. Here's a class that's been made compliant with the sorting routines of the Standard
Library containers.

[1] Although too many seem to think that it yields operator>!

class thing {

  std::string name_;

public:

  thing() {}

  explicit thing(const std::string& name):name_(name) {}

  friend bool operator<(const thing& lhs, const thing& rhs) {

    return lhs.name_<rhs.name_;

  } 

};

This class supports sorting, and it can be stored in associative containers, but it may not meet the expectations of the
client! For example, if a client needs to know whether thing a is greater than thing b, the client might write code like
this:

// is a greater than b?

if (b<a) {}

Although this is just as correct, it doesn't convey the intent of the code clearly, which is almost as important as the
correctness. If the client needs to know whether a is less than or equal to b, he would have to do this:

// is a less than, or equal to, b?

if (!(b<a)) {}

Again, the code is quite correct, but it will confuse people; the intent is certainly unclear to most casual readers. It
becomes even more confusing when introducing the notion of equivalence, which we support (otherwise our class
couldn't be stored in associative containers).

// is a equivalent to b?

if (!(a<b) && !(b<a)) {}

Please note that equivalence is a different relation than equality, a topic which is expanded upon in a later section. All
of the aforementioned relational properties are typically expressed differently in C++, namely through the operators
that explicitly perform the tests. The preceding examples should look like this (perhaps with the exception of
equivalence, but we'll let it pass for now):

if (a>b) {}

if (a<=b) {}

if (a==b) {}

The comments are now redundant, because the code says it all. As is, this code doesn't compile, because the thing
class doesn't support operator>, operator<=, or operator==. But, as these operators (except operator==) can
always be expressed for types that implement the less_than_comparable concept, the Operators library can help us
out. All we need to do is to have thing derive from boost::less_than_comparable, like so:

class thing : boost::less_than_comparable<thing> {

This gives you all the operators that can be implemented in terms of operator<, and so, by just specifying a base class,
the thing class now works as one would expect it to. As you can see, when deriving thing from a class in the
Operators library, we must also pass thing as a template parameter to that base class. This technique is discussed in
the following section. Note that operator== is not defined for classes supporting less_than_comparable, but there is
another concept that we can use for that one, namely equivalent. Deriving from boost::equivalent adds operator==,
but it should be duly noted that operator== is now defined in terms of an equivalence relation, which in turn does not
define equality. Equivalence implies a strict weak ordering.[2] Our final version of the class thing looks like this:

[2] If you're wondering what a strict weak ordering is, skip ahead to the next section, but don't forget to return here
later!

class thing : 

  boost::less_than_comparable<thing>,

  boost::equivalent<thing> {

  std::string name_;

public:

  thing() {}

  explicit thing(const std::string& name):name_(name) {}

  friend bool operator<(const thing& lhs,const thing& rhs) {

    return lhs.name_<rhs.name_;

  } 

};

This version only defines a single operator in thing's definition, which keeps the definition concise, and by virtue of the
inheritance from less_than_comparable and equivalent, it provides quite an impressive set of useful operators.

bool operator<(const thing&,const thing&);

bool operator>(const thing&,const thing&);

bool operator<=(const thing&,const thing&);

bool operator>=(const thing&,const thing&);

bool operator==(const thing&,const thing&);

I'm sure you've seen many classes that provide a multitude of operators. Such class definitions can be difficult to read
because there are so many operator functions declared/implemented. By inheriting from the concept classes in
operators, you provide the same interface but do so more clearly and with much less code. Mentioning these
concepts in the class definition makes it obvious for a reader familiar with less_than_comparable and equivalent that
the class supports the aforementioned relational operations.

 The Barton-Nackman Trick

 In the two examples we've seen of inheriting from operator base classes, a strange-looking construct feeds the
derived class to its base class. This is a well-known technique that is referred to as either the Barton-Nackmann trick
[3] or the Curiously Recurring Template Pattern.[4] The problem that this technique solves is that of a cyclic
dependency. Consider implementing a generic class that provides operator== for other classes that define operator<.
Incidentally, this is a concept known as equivalent in this library (and mathematics, of course). Now, it is clear that any
class utilizing an implementation providing such services needs to know about the enabling classlet's call it equivalent
after the concept it helps implement. However, it's just as clear that equivalent needs to know about the class for
which it should define operator==! This is a cyclic dependency, and at first glance, there's no easy way out. However,
if we make equivalent a class template, and add a template parameter that designates the class for which to define
operator==, we have effectively injected the dependent typewhich is the derived classinto the scope of equivalent.
This example demonstrates the use of this idea.

[3] "Invented" by John Barton and Lee Nackmann.

[4] "Invented" by James Coplien.

#include <iostream>

template <typename Derived> class equivalent {

public:

  friend bool operator==(const Derived& lhs,const Derived& rhs) {

    return !(lhs<rhs) && !(rhs<lhs);

  }

};

class some_class : equivalent<some_class> {

  int value_;

public:

  some_class(int value) : value_(value) {}

  friend bool operator<(const some_class& lhs,

    const some_class& rhs) {

    return lhs.value_<rhs.value_;

  }

};

int main() {

  some_class s1(4);

  some_class s2(4);

  if (s1==s2)

    std::cout << "s1==s2\n";

}

The base classequivalentaccepts a template argument that is the type for which it defines operator==. It implements
this operator in a generic fashion by using operator< for the parameterizing type. Then, the class some_class, wishing
to utilize the services of equivalent, derives from it and passes itself as equivalent's template parameter. Therefore, the
resulting operator== is defined for the type some_class, implemented in terms of some_class's operator<. That's all
there is to the Barton-Nackmann trick. This is a simple yet immensely useful pattern, quite beautiful in its elegance.

 Strict Weak Ordering

 I have already mentioned strict weak orderings twice in this book, and if you're not familiar with what they are, this
brief digression should help. A strict weak ordering is a relation between two objects. First, let's get a bit theoretical
and then we can make it more concrete. For a function f(a,b) that implements a strict weak ordering, with a and b
being two objects of the same type, we say that a and b are equivalent if f(a,b) is false and f(b,a) is false. This means
that a does not precede b, and b does not precede a. We can thus consider them to be equivalent. Furthermore,
f(a,a) must always yield false[5] and if f(a,b) is true, then f(b,a) must be false.[6] Also, if f(a,b) and f(b,c) is true, then
so is f(a,c).[7] Finally, if f(a,b) is false and f(b,a) is false, and if f(b,c) is false and f(c,b) is false, then f(a,c) is false and
f(c,a) is false.[8]

 [5] This is irreflexivity.

[6] This is antisymmetry.

[7] This is transitivity.

[8] This is transitivity of equivalence.

 Applying the preceding to our previous example (with the class thing) can help clarify the theory. The less than
comparison for things is implemented in terms of less than for std::string. This, in turn, is a lexicographical comparison.
So, given a thing a containing the string "First," a thing b containing the string "Second," and a thing c containing the
string "Third," let's assert the earlier definitions and axioms.

#include <cassert>

#include <string>

#include "boost/operators.hpp"

// Definition of class thing omitted

int main() {

  thing a("First");

  thing b("Second");

  thing c("Third");

  // assert that a<b<c 

  assert(a<b && a<c && !(b<a) && b<c && !(c<a) && !(c<b));

  // Equivalence

  thing x=a;

  assert(!(x<a) && !(a<x));

  // Irreflexivity

  assert(!(a<a));

  // Antisymmetry

  assert((a<b)==!(b<a));

  // Transitivity

  assert(a<b && b<c && a<c);

  // Transitivity of equivalence

  thing y=x;

  assert( (!(x<a) && !(a<x)) && 

    (!(y<x) && !(x<y)) && 

    (!(y<a) && !(a<y))); 

}

Now, all of these asserts hold, because std::string implements a strict weak ordering.[9] Just as operator< should
define a strict weak ordering, so should operator>. Later on, we'll look at a very concrete example of what happens
when we fail to acknowledge the difference between equivalence (which is required for a strict weak ordering) and
equality (which is not).

[9] In fact, std::string defines a total ordering, which is a strict weak ordering with the additional requirement that
equivalence and equality are identical.

 Avoid Object Bloating

 In the previous example, our class derived from two base classes: less_than_comparable<thing> and
equivalent<thing>. Depending on your compiler, you may pay a price for this multiple inheritance; thing may be much
larger than it needs to be. The standard permits a compiler to use the empty base optimization to make a base class
that contains no data members, no virtual functions, and no duplicated base classes, to take zero space in derived
class objects, and most modern compilers perform that optimization. Unfortunately, using the Operators library often
leads to inheriting from multiple classes and few compilers apply the empty base optimization in that case. To avoid
the potential object size bloating, Operators supports a technique known as base class chaining. Every operator class
accepts an optional, additional template parameter, from which it derives. By having one concept class derive from
another, which derives from another, which derives from another…(you get the idea), the multiple inheritance is
eliminated. This alternative is easy to use. Rather than inheriting from several base classes, simply chain the classes
together, like so.

// Before

boost::less_than_comparable<thing>,boost::equivalent<thing>

// After

boost::less_than_comparable<thing,boost::equivalent<thing> >

This method removes the inheritance from multiple empty base classes, which may not trigger your compiler's empty
base optimization, in favor of derivation from a chain of empty base classes, increasing the chance of triggering the
empty base optimization and reducing the size of the derived classes. Experiment with your compiler to see what
benefits you can gain from this technique. Note that there is a limit to the length of the base class chain that depends
upon the compiler. There's also a limit to the length of the chain a human can grok! That means that classes that need
to derive from many operator classes may need to group them. Better yet, use the composite concepts already
provided by the Operators library.

 The difference in size between using base class chaining and multiple inheritance on a popular compiler[10] that
doesn't perform the empty base class optimization for multiple inheritance is quite large for my tests. Using base class
chaining ensures that the size of types is not negatively affected, whereas with multiple inheritance, the size grows by 8
bytes for a trivial type (admittedly, 8 additional bytes isn't typically a problem for most applications). If the size of the
wrapped type is very small, the overhead caused by multiple inheritance is potentially more than is tolerable. Because
it is so easy, consider using base class chaining all the time!

[10] I say this both because there's no need for calling names, and because everyone already knows that I'm talking
about Microsoft's old compiler (their new one rocks).

 Operators and Different Types

 Sometimes, an operator involves more than one type. For example, consider a string class that supports
concatenation from character arrays through operator+ and operator+=. The Operators library helps here too, by
way of the two-argument versions of the operator templates. In the case of the string class, there is probably a
conversion constructor available that accepts a char*, but as we shall see, that doesn't solve all of the problems for
this class. Here's the string class that we'll use.

class simple_string {

public:

  simple_string();

  explicit simple_string(const char* s);

  simple_string(const simple_string& s);

  ~simple_string();

  simple_string& operator=(const simple_string& s);

  simple_string& operator+=(const simple_string& s);

  simple_string& operator+=(const char* s);

  friend std::ostream& 

    operator<<(std::ostream& os,const simple_string& s);

};

As you can see, we've already added two versions of operator+= for simple_string. One accepts a const
simple_string&, and the other accepts a const char*. As is, our class supports usage like this.

simple_string s1("Hello there");

simple_string s2(", do you like the concatenation support?");

s1+=s2;

s1+=" This works, too";

Although the preceding works as intended, we still haven't provided the binary operator+, an omission that the class'
users definitely won't be pleased with. Note that for our simple_string, we could have opted to enable concatenation
by omitting the explicit conversion constructor. However, doing so would involve an extra (unnecessary) copy of the
character buffer, and the only savings would be the omission of an operator.

// This won't compile

simple_string s3=s1+s2;

simple_string s4=s3+" Why does this class behave so strangely?";

Now let's use the Operators library to supply the missing operators for the class. Note that there are actually three
missing operators.

simple_string operator+(const simple_string&,const simple_string&);

simple_string operator+(const simple_string& lhs, const char* rhs);

simple_string operator+(const char* lhs, const simple_string& rhs);

When defining operators manually, it's easy to forget one of the overloads for taking one const simple_string& and
one const char*. When using the Operators library, you can't forget, because the library is implementing the missing
operators for you! What we want for simple_string is the addable concept, so we simply derive simple_string from
boost::addable<simple_string>.

class simple_string : boost::addable<simple_string> {

In this case, however, we also want the operators that allow mixing simple_strings and const char*s. To do this, we
must specify two typesthe result type, simple_string, and the second argument type, const char*. We'll utilize base
class chaining to avoid increasing the size of the class.

class simple_string :     

  boost::addable<simple_string,

    boost::addable2<simple_string,const char*> > {

This is all that's needed for supporting the full set of operators that we aimed for! As you can see, we used a different
operator class: addable2. If you're using a compiler that supports partial template specialization, you don't have to
qualify the name; use addable instead of addable2. There are also versions of the classes with the suffix "1" provided
for symmetry. It may increase the readability to always be explicit about the number of arguments, which gives us the
following derivation for simple_string.

class simple_string :     

  boost::addable1<simple_string,

    boost::addable2<simple_string,const char*> > {

Choose between them according to taste, and if your compiler supports partial template specialization, the simplest
choice is to omit the suffixes altogether.

class simple_string :     

  boost::addable<simple_string,

    boost::addable<simple_string,const char*> > {

The Difference Between Equality and Equivalence

 When defining relational operators for classes, it's important to make the distinction between equality and
equivalence. An equivalence relation is required in order to use the associative containers, and it defines a strict weak
ordering through the concept LessThanComparable.[11] This relation makes the least assumptions, and poses as few
requirements as possible, for types that are to be used with the Standard Library containers. However, the difference
between equality and equivalence can sometimes be confusing, and it is important to understand the difference. When
a class supports the concept LessThanComparable, it typically also supports the notion of equivalence. If two
elements are compared, and neither is less than the other, we can consider them to be equivalent. However,
equivalence doesn't necessarily mean equal. For example, it may be reasonable to omit certain characteristics from a
less than relation, but consider them for equality.[12] To illustrate this, let's look at a class, animal, which supports
both an equivalence relation and an equality relation.

[11] Capitalized concepts like LessThanComparable come straight from the C++ Standard. All of the concepts in
Boost.Operators use lowercase names.

[12] Which implies a strict weak ordering, but not a total ordering.

class animal : boost::less_than_comparable<animal, 

boost::equality_comparable<animal> > {

  std::string name_;

  int age_;

public:

  animal(const std::string& name,int age)

    :name_(name),age_(age) {}

  void print() const {

    std::cout << name_ << " with the age " << age_ << '\n';

  }   

  friend bool operator<(const animal& lhs, const animal& rhs) {

    return lhs.name_<rhs.name_;

  }

  friend bool operator==(const animal& lhs, const animal& rhs) {

    return lhs.name_==rhs.name_ && lhs.age_==rhs.age_;

  }

};

Notice the difference between the implementation of operator< and that of operator==. Only the animal's name is part
of the less than relation, whereas comparison of both the name and the age comprise the equality test. There is nothing
wrong with this approach, but it can have interesting ramifications. Let's now put this class into action by storing some
elements of the class in a std::set. Just like other associative containers, set only relies on the concept
LessThanComparable. In the sample code that follows, we create four animals that are all different, and then try to
insert them into a set, all while pretending we don't know that there is a difference between equality and equivalence.

#include <iostream>

#include <string>

#include <set>

#include <algorithm>

#include "boost/operators.hpp"

#include "boost/bind.hpp"

int main() {

  animal a1("Monkey", 3);

  animal a2("Bear", 8);

  animal a3("Turtle", 56);

  animal a4("Monkey", 5);

  std::set<animal> s;

  s.insert(a1);

  s.insert(a2);

  s.insert(a3);

  s.insert(a4);

  std::cout << "Number of animals: " << s.size() << '\n';

  std::for_each(s.begin(),s.end(),boost::bind(&animal::print,_1));

  std::cout << '\n';

  std::set<animal>::iterator it(s.find(animal("Monkey",200)));

  if (it!=s.end()) {

    std::cout << "Amazingly, there's a 200 year old monkey "

      "in this set!\n";

    it->print();

  }

  it=std::find(s.begin(),s.end(),animal("Monkey",200));

  if (it==s.end()) {

    std::cout << "Of course there's no 200 year old monkey "

      "in this set!\n";

  }

}

Running the program produces the following, utterly nonsensical, output.

Number of animals: 3

Bear with the age 8

Monkey with the age 3

Turtle with the age 56

Amazingly, there's a 200 year old monkey in this set!

Monkey with the age 3

Of course there's no 200 year old monkey in this set!

The problem is not the age of the monkeyit very seldom isbut the failure to distinguish between two related concepts.
First, when the four animals (a1, a2, a3, a4) are inserted into the set, the second monkey, a4, is actually not inserted
at all, because a1 and a4 are equivalent. The reason is that std::set uses the expression !(a1<a4) && !(a4<a1) to
decide whether there is already a matching element. Because the result of that expression is true (our operator<
doesn't include the age), the insertion fails.[13] Then, when we ask the set to search for a 200 year old monkey using
find, it supposedly locates such a beast. Again, this is because of the equivalence relation for animal, which relies on
animal's operator< and thus, doesn't care about age. We use find again to locate the monkey in the set (a1), but then,
to decide whether it matches, we call on operator== and find that the monkeys don't match. It's not hard to
understand the difference between equality and equivalence when looking at these monkeys, but it is imperative to
know which one is applicable for a given context.

[13] A set, by definition, does not contain duplicates.

 Arithmetic Types

 The Operators library is especially useful when defining arithmetic types. There are many operators that must be
defined for an arithmetic type, and doing it manually is a daunting, tedious task, with plenty of opportunity for errors or
omissions. The concepts that are defined by the Operators library make it easy to define only the bare minimum of
operators for a class, and have the rest supplied automagically. Consider a class that is to support addition and
subtraction. Assume that this class uses a built-in type for its implementation. Now add the appropriate operators and
be sure that they work with not only instances of that class, but also with the built-in types that are convertible to the
implementation type. You'll need to provide 12 different addition and subtraction operators. The easier (and safer!)
approach, of course, is to use the two-argument form of the addable and subtractable classes. Now suppose you
need to add the set of relational operators, too. You could probably add the 10 operators needed yourself, but by
now you know that the easiest thing is to use less_than_comparable and equality_comparable. Having done so, you'd
have 22 operators for the cost of 6. However, you might also note that these concepts are common for value type
classes. Indeed, instead of using those four classes, you could just use additive and totally_ordered.

 We'll start by deriving from all four of the concept classes: addable, subtractable, less_than_comparable, and
equality_comparable. The class, limited_type, just wraps a built-in type and forwards any operation to that type. It
limits the number of available operations, providing just the relational operators and those for addition and subtraction.

#include "boost/operators.hpp"

template <typename T> class limited_type : 

  boost::addable<limited_type<T>,

    boost::addable<limited_type<T>,T,

      boost::subtractable<limited_type<T>,

        boost::subtractable<limited_type<T>,T,

          boost::less_than_comparable<limited_type<T>,

            boost::less_than_comparable<limited_type<T>,T,

              boost::equality_comparable<limited_type<T>,

                boost::equality_comparable<limited_type<T>,T >

> > > > > > > {

  T t_;

public:

  limited_type():t_() {}

  limited_type(T t):t_(t) {}

  T get() {

    return t_;

  }

  // For less_than_comparable

  friend bool operator<(

      const limited_type<T>& lhs, 

      const limited_type<T>& rhs) {

    return lhs.t_<rhs.t_;

  }

  // For equality_comparable

  friend bool operator==(

      const limited_type<T>& lhs, 

      const limited_type<T>& rhs) {

    return lhs.t_==rhs.t_;

  }

  // For addable

  limited_type<T>& operator+=(const limited_type<T>& other) {

    t_+=other.t_;

    return *this;

  }

  // For subtractable

  limited_type<T>& operator-=(const limited_type<T>& other) {

    t_-=other.t_;

    return *this;

  }

};

This is a good example of how easy the implementation becomes when using the Operators library. Implementing the
few operators that must be implemented to get support for the full set of operators is typically not that hard, and the
class becomes much more understandable and maintainable than would otherwise have been the case. (Even if
implementing those operators is hard, you can concentrate on getting just those few right.) The only potential problem
with the class is the derivation from eight different operator classes which, when using base class chaining, is not as
readable as one would like. We can greatly simplify our class by using composite concepts instead.

template <typename T> class limited_type : 

  boost::additive<limited_type<T>, 

    boost::additive<limited_type<T>,T, 

      boost::totally_ordered<limited_type<T>, 

        boost::totally_ordered<limited_type<T>,T > > > >  {

This is much nicer, and it does save some typing, too.

 Use Operators Only When Operators Should Be Used

 It may seem really obvious that operators should be used only when appropriate, but for some reason there is a
certain "coolness factor" about operators that seems to tempt some people to add them even when their semantics are
unclear. There are many scenarios requiring operators, such as when there is a relation between instances of a type,
or when creating an arithmetic type. But there are also less clear-cut cases, where one needs to consider the
expectations of clients of the class, and where perceived ambiguity might make a member function a better choice. 

Operators have been plied into unusual service over the years. Concatenating strings with addition operators and I/O
with shift operators are two common examples where the operators do not necessarily have a mathematical meaning,
but have been used for other semantic purposes. Some have questioned the use of the subscript operator for
accessing elements in a std::map. (Others, of course, think it's perfectly natural. And they are right.) Sometimes, using
operators for tasks other than their role with built-in types makes sense. Other times, it can go horribly wrong, causing
confusion and ambiguities. When you choose to overload operators with meanings that deviate from those of the
built-in types, you must do so carefully. You must ensure that the meaning is obvious and that the precedence is
correct. That was the reason for choosing the shift operators for I/O in the IOStreams library. The operators clearly
suggested moving something one direction or the other and the precedence of the shift operators put them lower than
most others. If you create a class representing a car, some might find operator-= convenient. However, what might
that operator mean to clients? Some might think it was used to account for gasoline used while driving. Others might
think that it was used to account for depreciation of the car's value (an accountant, of course). Adding that operator is
wrongheaded because it doesn't have a clear purpose, whereas a member function can name the operation providing
clarity. Don't add operators just because it makes for "cool" coding. Add them because it makes sense, be sure to
add all the operators that apply, and be sure to use the Boost.Operators library!

 Understanding How It Works

 We'll now take a look at how this library works, to further your understanding of how to use it properly. For
Boost.Operators, it's not a hard thing to do. Let's see how to implement support for less_than_comparable. You need
to know the type for which you'll add support, and you need to augment that type with operators that use one or
more operators supplied for that type. less_than_comparable requires that we provide operator<, operator>,
operator<=, and operator>=. Of these, by now, you know how to implement operator>, operator<=, and
operator>= in terms of operator<. Here's how one might implement it.

template <class T>

class less_than1

{

public:

  friend bool operator>(const T& lhs,const T& rhs)  { 

    return rhs<lhs; 

  }

  friend bool operator<=(const T& lhs,const T& rhs) { 

    return !(rhs<lhs); 

  }

  friend bool operator>=(const T& lhs,const T& rhs) { 

    return !(lhs<rhs); 

  }

};

For operator>, you just need to switch the order of the arguments. For operator<=, observe that a<=b means that b
is not less than a. Thus, the implementation is to call operator< with the arguments in reverse order and negate the
result. For operator>=, there's the similar observation that a>=b also means that a is not less than b. Thus, the
implementation just negates the result of calling operator<. This is a working example: You could use it directly and it
would do the right thing. However, it would be nice to also have a version that supports comparisons between T and
compatible types, which is simply a case of adding more overloads. For symmetry, you need to allow either type to
be on the left side of the operation. (This is easy to forget when adding operators manually; one tends to only see
clearly the fact that the right side must accept the other type. Of course, your two-type version of less_than wouldn't
make such silly mistakes, right?)

template <class T,class U>

class less_than2

{

public:

  friend bool operator<=(const T& lhs,const U& rhs) { 

    return !(lhs>rhs); 

  }

  friend bool operator>=(const T& lhs,const U& rhs) { 

    return !(lhs<rhs); 

  }

  friend bool operator>(const U& lhs,const T& rhs) {

    return rhs<lhs; 

  }

  friend bool operator<(const U& lhs,const T& rhs)  { 

    return rhs>lhs; 

  }

  friend bool operator<=(const U& lhs,const T& rhs) { 

    return !(rhs<lhs); 

  }

  friend bool operator>=(const U& lhs,const T& rhs) { 

    return !(rhs>lhs); 

  }

};

There it is! Two fully functioning less_than classes. Of course, to match the functionality of less_than_comparable in
the Operators library, we must somehow get rid of the suffix stating how many types are used. What we really want is
one version, or at least one name. If you are working with a compiler that supports partial template specialization,
you're in luck, because it's basically a three-liner to make this happen. But, there are still a number of programmers
who don't have that luxury, so we'll do it the hard way, and avoid partial specialization altogether. First, we know that
we need something called less_than, which is to be a template accepting one or two argument types. We also know
that the second type should be optional, which we can accomplish by adding a default type that we know users won't
pass to the template.

struct dummy {};

template <typename T,typename U=dummy> class less_than {};

We need some mechanism for selecting the correct version of less_than (less_than1 or less_than2); we can do this
without partial template specialization by using an auxiliary class that is parameterized on one type, with a nested
template struct that accepts an additional type. Then, using full specialization, we can make sure that whenever the
type U is dummy, less_than1 is selected.

template <typename T> struct selector {

  template <typename U> struct type {

    typedef less_than_2<U,T> value;

  };

};

The preceding version creates a type definition called value, which is a correct instantiation of the less_than2 template
that we've created.

template<> struct selector<dummy> {

  template <typename U> struct type {

    typedef less_than1<U> value;

  };

};

The fully specialized selector creates a typedef for the other version, less_than1. To make it easier for the compiler,
we'll create another auxiliary class with the sole responsibility of collecting the correct type and storing it in the suitably
named typedef type.

template <typename T,typename U> struct select_implementation {

  typedef typename selector<U>::template type<T>::value type;

};

The syntax is not so pleasing to the eye, because of the nested parameterized struct in the selector class, but as clients
of this class don't have to read this part of the code, that's really not a big issue. Now that we have all the ingredients
that we need to select a correct implementation, we finalize the class by deriving less_than from
select_implementation<T,U>::type, which evaluates to either less_than1 or less_than2, depending on whether the user
has supplied one or two types to our class.

template <typename T,typename U=dummy> class less_than : 

  select_implementation<T,U>::type {};

That's it! We now have a fully working version of less_than, which users can use in the easiest possible way due to the
extra effort we spent in adding a mechanism for detecting and selecting the correct version of the implementation. We
also know exactly how operator< can be used to create the remaining operators that are applicable for any type that
is less_than_comparable. Doing the same for the other operators is just a matter of being meticulous and
understanding how different operators work together to form new concepts.

 The Things That Remain

 We haven't yet spoken about the remaining part of the Operators library, the iterator helpers. I won't show example
code for those, because you'll mainly want to use them when defining iterator types, and that needs additional
explanation that does not fit in this chapter or in this book. However, I mention them here because if you are defining
iterator types without the help of Boost.Iterators, you most definitely want to use these helpers. The dereference
operators help define the correct operators regardless of whether you are using a proxy class. They are also useful
when defining smart pointers, which typically also require defining both operator-> and operator*. The iterator
helpers group together concepts that are required for the different types of iterators. For example, a random access
iterator needs to be bidirectional_iterable, totally_ordered, additive, and indexable. When defining new iterator types,
which should preferably be done with the help of the Boost.Iterator library, the Operators library can help.





Operators Summary
 Providing the correct set of relational and arithmetic operators for user-defined classes is vital and provides significant
challenges to get right. With the use of the Operators library, this task is greatly simplified, and correctness and
symmetry come almost for free. In addition to the help that the library offers in defining the full sets of operators, the
naming and definitions of the concepts that a class can support is made explicit in the definition of the class (and by the
Operators library!). In this chapter, we have seen several examples of how using this library improves programming
with operators by simplification and ensured correctness. It is a sad fact that providing important relational and
arithmetic operators for user-defined types is often overlooked, and part of the reason is that there is so much work
involved to get it right. This is no longer the case, and Boost.Operators is the reason why.

 An important consideration when providing relational and arithmetic operators is to make sure that they are
warranted in the first place. When there is an ordering relation between types, or for numeric types, this is always the
case, but for other types of classes, operators may not convey intent clearly. Operators are almost always syntactic
sugar, and the importance of syntactic sugar must never be underestimated. Unfortunately, operators are also
seductive. Use them wisely, for they wield vast power. When you choose to add operators to a class, the
Boost.Operators library increases the quality and efficiency of your work. The conclusion is that you should augment
your classes with operators only after careful thought, and use the Operators library whenever you get the chance!

 The Operators library is the result of contributions from several people. It was started by David Abrahams, and has
since received valuable additions from Jeremy Siek, Aleksey Gurtovoy, Beman Dawes, and Daryle Walker. As is the
case for most Boost libraries, innumerable other people have been involved in making this library what it is today.



Library 5. Regex



How Does the Regex Library Improve Your Programs?


 Brings support for regular expressions to C++


Improves the robustness of input validation

 Regular expressions are very often used in text processing. For example, there are a number of validation tasks that
are suitable for regular expressions. Consider an application that requires the input to consist only of numbers.
Another program might require a specific format, such as three digits, followed by a character, then two more digits.
You could validate ZIP Codes, credit card numbers, Social Security numbers, or just about anything else; and using
regular expressions to do the validation is straightforward. Another typical area where regular expressions excel are
text substitutionsthat is, replacing some text with other text. Suppose you need to change the spelling of the word
colour to color throughout a number of documents. Again, regular expressions provide the best means to do
thatincluding remembering to make the changes also for Colour and COLOUR, and for the plural form colours, the
verb colourize, and so forth. Yet another use case for regular expressions is in formatting of text.

 Many popular programming languagesPerl is a prime examplehave built-in support for regular expressions, but that's
not the case with C++. Also, the C++ Standard is silent when it comes to regexes. Boost.Regex is a very complete
and effective library for incorporating regular expressions in C++ programs, and it even includes several different
syntaxes that are used in widespread tools such as Perl, grep, and Emacs. It is one of the most renowned C++
libraries for working with regular expressions, and is both easy to use and incredibly powerful.



How Does Regex Fit with the Standard Library?
 There is currently no support for regular expressions in the C++ Standard Library. This is unfortunate, as there are
numerous uses for regular expressions, and users are sometimes deterred from using C++ for writing applications that
need support for regular expressions. Boost.Regex fills that void in the standard, and it has been proposed for
inclusion in a future version of the C++ Standard. Boost.Regex has been accepted for the upcoming Library Technical
Report.





Regex

 Header: "boost/regex.hpp"

 A regular expression is encapsulated in an object of type basic_regex. We will look closer at the options for how
regular expressions are compiled and parsed in subsequent sections, but let's first take a cursory look at basic_regex
and the three important algorithms that are the bulk of this library.

namespace boost {

  template <class charT,

            class traits=regex_traits<charT> >

  class basic_regex {

  public:

    explicit basic_regex(

      const charT* p, 

      flag_type f=regex_constants::normal);

    bool empty() const; 

    unsigned mark_count() const; 

    flag_type flags() const;

  };

  typedef basic_regex<char> regex;

  typedef basic_regex<wchar_t> wregex;

}

Members

explicit basic_regex (

  const charT* p, 

  flag_type f=regex_constants::normal);

This constructor accepts a character sequence that contains the regular expression, and an argument denoting which
options to use for the regular expressionfor example, whether it should ignore case. If the regular expression in p isn't
valid, an exception of type bad_expression, or regex_error, is thrown. Note that these two exceptions mean the same
thing; at the time of this writing, the change from the current name bad_expression has not yet been made, but the next
version of Boost.Regex will change it to regex_error.

bool empty() const; 

This member is a predicate that returns true if the instance of basic_regex does not contain a valid regular
expressionthat is, it has been assigned an empty character sequence.

unsigned mark_count() const; 

mark_count returns the number of marked subexpressions in the regex. A marked subexpression is a part of the
regular expression enclosed within parentheses. The text that matches a subexpression can be retrieved after calling
one of the regular expression algorithms. 

flag_type flags() const;

Returns a bitmask containing the option flags that are set for this basic_regex. Examples of flags are icase, which
means that the regular expression is ignoring case, and JavaScript, indicating that the syntax for the regex is the one
used in JavaScript.

typedef basic_regex<char> regex;

typedef basic_regex<wchar_t> wregex;

Rather than declaring variables of type basic_regex, you'll typically use one of these two typedefs. These two, regex
and wregex, are shorthands for the two character types, similar to how string and wstring are shorthands for
basic_string<char> and basic_string<wchar_t>. This similarity is no coincidence, as a regex is, in a way, a container
for a special type of string.

 Free Functions

template <class charT,class Allocator,class traits >

  bool regex_match(

    const charT* str, 

    match_results<const charT*,Allocator>& m,

    const basic_regex<charT,traits >& e,

    match_flag_type flags = match_default);

regex_match determines whether a regular expression (the argument e) matches the whole character sequence str. It
is mainly used for validating text. Note that the regular expression must match everything in the parsed sequence, or
the function returns false. If the sequence is successfully matched, regex_match returns TRue.

template <class charT,class Allocator, class traits> 

  bool regex_search(

    const charT* str,

    match_results<const charT*,Allocator>& m,

    const basic_regex<charT,traits >& e,

    match_flag_type flags = match_default);

regex_search is similar to regex_match, but it does not require that the whole character sequence be matched for
success. You use regex_search to find a sub-sequence of the input that matches the regular expression e.

template <class traits,class charT>

  basic_string<charT> regex_replace(

    const basic_string<charT>& s,

    const basic_regex<charT,traits >& e,

    const basic_string<charT>& fmt,

    match_flag_type flags = match_default);

regex_replace searches through a character sequence for all matches of the regular expression e. Every time the
algorithm makes a successful match, it formats the matched string according to the argument fmt. By default, any text
that is not matched is unchangedthat is, the text is part of the output but is not altered.

 There are several overloads for all of these three algorithms: one accepting a const charT* (charT is the character
type), another accepting a const basic_string<charT>&, and one overload that takes two bidirectional iterators as
input arguments. 







Usage
 To begin using Boost.Regex, you need to include the header "boost/regex.hpp". Regex is one of the two libraries (the
other one is Boost.Signals) covered in this book that need to be separately compiled. You'll be glad to know that
after you've built Boostthis is a one-liner from the command promptlinking is automatic (for Windows-based
compilers anyway), so you're relieved from the tedium of figuring out which lib file to use. 

The first thing you need to do is to declare a variable of type basic_regex. This is one of the core classes in the library,
and it's the one that stores the regular expression. Creating one is simple; just pass a string to the constructor
containing the regular expression you want to use.

boost::regex reg("(A.*)");

This regular expression contains three interesting features of regular expressions. The first is the enclosing of a
subexpression within parenthesesthis makes it possible to refer to that subexpression later on in the same regular
expression or to extract the text that matches it. We'll talk about this in detail later on, so don't worry if you don't yet
see how that's useful. The second feature is the wildcard character, the dot. The wildcard has a very special meaning
in regular expressions; it matches any character. Finally, the expression uses a repeat, *, called the Kleene star, which
means that the preceding expression may match zero or more times. This regular expression is ready to be used in one
of the algorithms, like so: 

bool b=boost::regex_match(

  "This expression could match from A and beyond.",

  reg);

As you can see, you pass the regular expression and the string to be parsed to the algorithm regex_match. The result
of calling the function is true if there is an exact match for the regular expression; otherwise, it is false. In this case, the
result is false, because regex_match only returns true when all of the input data is successfully matched by the regular
expression. Do you see why that's not the case for this code? Look again at the regular expression. The first character
is a capital A, so that's obviously the first character that could ever match the expression. So, a part of the input"A
and beyond."does match the expression, but it does not exhaust the input. Let's try another input string.

bool b=boost::regex_match(

  "As this string starts with A, does it match? ",

  reg);

This time, regex_match returns true. When the regular expression engine matches the A, it then goes on to see what
should follow. In our regex, A is followed by the wildcard, to which we have applied the Kleene star, meaning that
any character is matching any number of times. Thus, the parsing starts to consume the rest of the input string, and
matches all the rest of the input.

 Next, let's see how we can put regexes and regex_match to work with data validation. 

Validating Input

 A common scenario where regular expressions are used is in validating the format of input data. Applications often
require that input adhere to a certain structure. Consider an application that accepts input that must come in the form
"3 digits, a word, any character, 2 digits or the string "N/A," a space, then the first word again." Coding such
validations manually is both tedious and error prone, and furthermore, these formats are typically exposed to changing
requirements; before you know it, some variation of the format needs to be supported, and your carefully crafted
parser suddenly needs to be changed and debugged. Let's assemble a regular expression that can validate such input
correctly. First, we need an expression that matches exactly 3 digits. There's a special shortcut for digits, \d, that we'll
use. To have it repeated 3 times, there's a special kind of repeat called the bounds operator, which encloses the
bounds in curly braces. Putting these two together, here's the first part of our regular expression.

boost::regex reg("\\d{3}");

Note that we need to escape the escape character, so the shortcut \d becomes \\d in our string. This is because the
compiler consumes the first backslash as an escape character; we need to escape the backslash so a backslash
actually appears in the regular expression string.

 Next, we need a way to define a wordthat is, a sequence of characters, ended by any character that is not a letter.
There is more than one way of accomplishing this, but we will do it using the regular expression features character
classes (also called character sets) and ranges. A character class is an expression enclosed in square brackets. For
example, a character class that matches any one of the characters a, b, and c, looks like this: [abc]. Using a range to
accomplish the same thing, we write it like so: [a-c]. For a character class that encompasses all characters, we could
go slightly crazy and write it like [abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ], but we
won't; we'll use ranges instead: [a-zA-Z]. It should be noted that using ranges like this can make one dependent on
the locale that is currently in use, if the basic_regex::collate flag is turned on for the regular expression. Using these
tools and the repeat +, which means that the preceding expression can be repeated, but must exist at least once, we're
now ready to describe a word. 

boost::regex reg("[a-zA-Z]+");

That regular expression works, but because it is so common, there is an even simpler way to represent a word: \w.
That operator matches all word characters, not just the ASCII ones, so not only is it shorter, it is better for
internationalization purposes. The next character should be exactly one of any character, which we know is the
purpose of the dot. 

boost::regex reg(".");

The next part of the input is 2 digits or the string "N/A." To match that, we need to use a feature called alternatives.
Alternatives match one of two or more subexpressions, with each alternative separated from the others by |. Here's
how it looks:

boost::regex reg("(\\d{2}|N/A)");

Note that the expression is enclosed in parentheses, to make sure that the full expressions are considered as the two
alternatives. Adding a space to the regular expression is simple; there's a shortcut for it: \s. Putting together everything
we have so far gives us the following expression:

boost::regex reg("\\d{3}[a-zA-Z]+.(\\d{2}|N/A)\\s");

Now things get a little trickier. We need a way to validate that the next word in the input data exactly matches the first
word (the one we capture using the expression [a-zA-Z]+). The key to accomplish this is to use a back reference,
which is a reference to a previous subexpression. For us to be able to refer to the expression [a-zA-Z]+, we must first
enclose it in parentheses. That makes the expression ([a-zA-Z]+) the first subexpression in our regular expression,
and we can therefore create a back reference to it using the index 1. 

That gives us the full regular expression for "3 digits, a word, any character, 2 digits or the string "N/A," a space, then
the first word again":

boost::regex reg("\\d{3}([a-zA-Z]+).(\\d{2}|N/A)\\s\\1");

Good work! Here's a simple program that makes use of the expression with the algorithm regex_match, validating
two sample input strings. 

#include <iostream>

#include <cassert>

#include <string>

#include "boost/regex.hpp"

int main() {

  // 3 digits, a word, any character, 2 digits or "N/A", 

  // a space, then the first word again

  boost::regex reg("\\d{3}([a-zA-Z]+).(\\d{2}|N/A)\\s\\1");

  std::string correct="123Hello N/A Hello";

  std::string incorrect="123Hello 12 hello";

  assert(boost::regex_match(correct,reg)==true);

  assert(boost::regex_match(incorrect,reg)==false);

}

The first string, 123Hello N/A Hello, is correct; 123 is 3 digits, followed by any character (a space), Hello is a word,
then another space, and finally the word Hello is repeated. The second string is incorrect, because the word Hello is
not repeated exactly. By default, regular expressions are case-sensitive, and the back reference therefore does not
match.

 One of the keys in crafting regular expressions is successfully decomposing the problem. When looking at the final
expression that you just created, it can seem quite intimidating to the untrained eye. However, when decomposing the
expression into smaller components, it's not very complicated at all.

 Searching

 We shall now take a look at another of Boost.Regex's algorithms, regex_search. The difference from regex_match is
that regex_search does not require that all of the input data matches, but only that part of it does. For this exposition,
consider the problem of a programmer who expects to have forgotten one or two calls to delete in his program.
Although he realizes that it's by no means a foolproof test, he decides to count the number of occurrences of new and
delete and see if the numbers add up. The regular expression is very simple; we have two alternatives, new and
delete.

boost::regex reg("(new)|(delete)");

There are two reasons for us to enclose the subexpressions in parentheses: one is that we must do so in order to form
the two groups for our alternatives. The other reason is that we will want to refer to these subexpressions when calling
regex_search, to enable us to determine which of the alternatives was actually matched. We will use an overload of
regex_search that also accepts an argument of type match_results. When regex_search performs its matching, it
reports subexpression matches through an object of type match_results. The class template match_results is
parameterized on the type of iterator that applies to the input sequence. 

template <class Iterator,

  class Allocator=std::allocator<sub_match<Iterator> >

    class match_results;

typedef match_results<const char*> cmatch;

typedef match_results<const wchar_t> wcmatch;

typedef match_results<std::string::const_iterator> smatch;

typedef match_results<std::wstring::const_iterator> wsmatch;

We will use std::string, and are therefore interested in the typedef smatch, which is short for
match_results<std::string::const_iterator>. When regex_search returns true, the reference to match_results that is
passed to the function contains the results of the subexpression matches. Within match_results, there are indexed
sub_matches for each of the subexpressions in the regular expression. Let's see what we have so far that can help our
confused programmer assess the calls to new and delete.

boost::regex reg("(new)|(delete)");

boost::smatch m;

std::string s=

  "Calls to new must be followed by delete. \

  Calling simply new results in a leak!";

if (boost::regex_search(s,m,reg)) {

  // Did new match?

  if (m[1].matched)

    std::cout << "The expression (new) matched!\n";

  if (m[2].matched)

    std::cout << "The expression (delete) matched!\n";

}

The preceding program searches the input string for new or delete, and reports which one it finds first. By passing an
object of type smatch to regex_search, we gain access to the details of how the algorithm succeeded. In our
expression, there are two subexpressions, and we can thus get to the subexpression for new by the index 1 of
match_results. We then hold an instance of sub_match, which contains a Boolean member, matched, that tells us
whether the subexpression participated in the match. So, given the preceding input, running this code would output
"The expression (new) matched!\n". Now, you still have some more work to do. You need to continue applying the
regular expression to the remainder of the input, and to do that, you use another overload of regex_search, which
accepts two iterators denoting the character sequence to search. Because std::string is a container, it provides
iterators. Now, for each match, you must update the iterator denoting the beginning of the range to refer to the end of
the previous match. Finally, add two variables to hold the counts for new and delete. Here's the complete program:

#include <iostream>

#include <string>

#include "boost/regex.hpp"

int main() {

  // Are there equally many occurrences of 

  // "new" and "delete"?

  boost::regex reg("(new)|(delete)");

  boost::smatch m;

  std::string s=

    "Calls to new must be followed by delete. \

     Calling simply new results in a leak!";

  int new_counter=0;

  int delete_counter=0;

  std::string::const_iterator it=s.begin();

  std::string::const_iterator end=s.end();

  while (boost::regex_search(it,end,m,reg)) {

    // New or delete?

    m[1].matched ? ++new_counter : ++delete_counter;

    it=m[0].second;

  }

  if (new_counter!=delete_counter)

    std::cout << "Leak detected!\n";

  else

    std::cout << "Seems ok...\n";

}

Note that the program always sets the iterator it to m[0].second. match_results[0] returns a reference to the submatch
that matched the whole regular expression, so we can be sure that the end of that match is always the correct location
to start the next run of regex_search. Running this program outputs "Leak detected!", because there are two
occurrences of new, and only one of delete. Of course, one variable could be deleted twice, there could be calls to
new[] and delete[], and so forth. 

By now, you should have a good understanding of how subexpression grouping works. It's time to move on to the
final algorithm in Boost.Regex, one that is used to perform substitutions. 

Replacing

 The third in the family of Regex algorithms is regex_replace. As the name implies, it's used to perform text
substitutions. It searches through the input data, finding all matches to the regular expression. For each match of the
expression, the algorithm calls match_results::format and outputs the result to an output iterator that is passed to the
function.

 In the introduction to this chapter, I gave you the example of changing the British spelling of colour to the U.S.
spelling of color. Changing the spelling without using regular expressions is very tedious, and extremely error prone.
The problem is that there might be different capitalization, and a lot of words that are affectedfor example, colourize.
To properly attack this problem, we need to split the regular expression into three subexpressions.

boost::regex reg("(Colo)(u)(r)",

  boost::regex::icase|boost::regex::perl); 

We have isolated the villainthe letter uin order to surgically remove it from any matches. Also note that this regex is
case-insensitive, which we achieve by passing the format flag boost::regex::icase to the constructor of regex. Note that
you must also pass any other flags that you want to be in effect. A common user error when setting format flags is to
omit the ones that regex turns on by default, but that don't workyou must always apply all of the flags that should be
set. 

When calling regex_replace, we are expected to provide a format string as an argument. This format string determines
how the substitution will work. In the format string, it's possible to refer to subexpression matches, and that's precisely
what we need here. You want to keep the first matched subexpression, and the third, but let the second (u), silently
disappear. The expression $N, where N is the index of a subexpression, expands to the match for that subexpression.
So our format string becomes "$1$3", which means that the replacement text is the result of the first and the third
subexpressions. By referring to the subexpression matches, we are able to retain any capitalization in the matched
text, which would not be possible if we were to use a string literal as the replacement text. Here's a complete program
that solves the problem.

#include <iostream>

#include <string>

#include "boost/regex.hpp"

int main() {

  boost::regex reg("(Colo)(u)(r)",

    boost::regex::icase|boost::regex::perl);

  std::string s="Colour, colours, color, colourize";

  s=boost::regex_replace(s,reg,"$1$3");

  std::cout << s;

}

The output of running this program is "Color, colors, color, colorize". regex_replace is enormously useful for applying
substitutions like this.

 A Common User Misunderstanding

 One of the most common questions that I see related to Boost.Regex is related to the semantics of regex_match. It's
easy to forget that all of the input to regex_match must match the regular expression. Thus, users often think that code
like the following should yield true.

boost::regex reg("\\d*");

bool b=boost::regex_match("17 is prime",reg);

Rest assured that this call never results in a successful match. All of the input must be consumed for regex_match to
return TRue! Almost all of the users asking why this doesn't work should use regex_search rather than regex_match.

boost::regex reg("\\d*");

bool b=boost::regex_search("17 is prime",reg);

This most definitely yields TRue. It is worth noting that it's possible to make regex_search behave like regex_match,
using special buffer operators. \A matches the start of a buffer, and \Z matches the end of a buffer, so if you put \A
first in your regular expression, and \Z last, you'll make regex_search behave exactly like regex_matchthat is, it must
consume all input for a successful match. The following regular expression always requires that the input be exhausted,
regardless of whether you are using regex_match or regex_search.

boost::regex reg("\\A\\d*\\Z");

Please understand that this does not imply that regex_match should not be used; on the contrary, it should be a clear
indication that the semantics we just talked aboutthat all of the input must be consumedare in effect. 

About Repeats and Greed

 Another common source of confusion is the greediness of repeats. Some of the repeatsfor example, + and *are
greedy. This means that they will consume as much of the input as they possibly can. It's not uncommon to see regular
expressions such as the following, with the intent of capturing a digit after a greedy repeat is applied.

boost::regex reg("(.*)(\\d{2})");

This regular expression succeeds, but it might not match the subexpressions that you think it should! The expression .*
happily eats everything that following subexpressions don't match. Here's a sample program that exhibits this behavior:

int main() {

  boost::regex reg("(.*)(\\d{2})");

  boost::cmatch m;

  const char* text = "Note that I'm 31 years old, not 32.";

  if(boost::regex_search(text,m, reg)) {

    if (m[1].matched)

      std::cout << "(.*) matched: " << m[1].str() << '\n';

    if (m[2].matched)

      std::cout << "Found the age: " << m[2] << '\n';

  }

}

In this program, we are using another parameterization of match_results, tHRough the type cmatch. It is a typedef for
match_results<const char*>, and the reason we must use it rather than the type smatch we've been using before is
that we're now calling regex_search with a string literal rather than an object of type std::string. What do you expect
the output of running this program to be? Typically, users new to regular expressions first think that both
m[1].matched and m[2].matched will be TRue, and that the result of the second subexpression will be "31". Next,
after realizing the effects of greedy repeatsthat they consume as much input as possiblethey tend to think that only the
first subexpression can be TRuethat is, the .* has successfully eaten all of the input. Finally, new users come to the
conclusion that the expression will match both subexpressions, but that the second expression will match the last
possible sequence. Here, that means that the first subexpression will match "Note that I'm 31 years old, not" and the
second will match "32". 

So, what do you do when you actually want is to use a repeat and the first occurrence of another subexpression? Use
non-greedy repeats. By appending ? to the repeat, it becomes non-greedy. This means that the expression tries to find
the shortest possible match that doesn't prevent the rest of the expression from matching. So, to make the previous
regex work correctly, we need to update it like so.

boost::regex reg("(.*?)(\\d{2})");

If we change the program to use this regular expression, both m[1].matched and m[2].matched will still be true. The
expression .*? consumes as little of the input as it can, which means that it stops at the first character 3, because that's
what the expression needs in order to successfully match. Thus, the first subexpression matches "Note that I'm" and
the second matches "31". 

A Look at regex_iterator

 We have seen how to use several calls to regex_search in order to process all of an input sequence, but there's
another, more elegant way of doing that, using a regex_iterator. This iterator type enumerates all of the regular
expression matches in a sequence. Dereferencing a regex_iterator yields a reference to an instance of match_results.
When constructing a regex_iterator, you pass to it the iterators denoting the input sequence, and the regular
expression to apply. Let's look at an example where we have input data that is a comma-separated list of integers.
The regular expression is simple.

boost::regex reg("(\\d+),?");

Adding the repeat ? (match zero or one times) to the end of the regular expression ensures that the last digit will be
successfully parsed, even if the input sequence does not end with a comma. Further, we are using another repeat, +.
This repeat ensures that the expression matches one or more times. Now, rather than doing multiple calls to
regex_search, we create a regex_iterator, call the algorithm for_each, and supply it with a function object to call with
the result of dereferencing the iterator. Here's a function object that accepts any form of match_results due to its
parameterized function call operator. All work it performs is to add the value of the current match to a total (in our
regular expression, the first subexpression is the one we're interested in). 

class regex_callback {

  int sum_;

public:

  regex_callback() : sum_(0) {}

  template <typename T> void operator()(const T& what) {

    sum_+=atoi(what[1].str().c_str());

  }

  int sum() const {

    return sum_;

  }

};

You now pass an instance of this function object to std::for_each, which results in an invocation of the function call
operator for every dereference of the iterator itthat is, it is invoked every time there is a match of a subexpression in
the regex.

int main() {

  boost::regex reg("(\\d+),?");

  std::string s="1,1,2,3,5,8,13,21";

  boost::sregex_iterator it(s.begin(),s.end(),reg);

  boost::sregex_iterator end;

  regex_callback c;

  int sum=for_each(it,end,c).sum();

}

As you can see, the past-the-end iterator passed to for_each is simply a default-constructed instance of
regex_iterator. Also, the type of it and end is boost::sregex_iterator, which is a typedef for
regex_iterator<std::string::const_iterator>. Using regex_iterator this way is a much cleaner way of matching multiple
times than what we did previously, where we manually had to advance the starting iterator and call regex_search in a
loop. 

Splitting Strings with regex_token_iterator

 Another iterator type, or to be more precise, an iterator adaptor, is boost::regex_token_iterator. It is similar to
regex_iterator, but may also be employed to enumerate each character sequence that does not match the regular
expression, which is useful for splitting strings. It is also possible to select which subexpressions are of interest, so that
when dereferencing the regex_token_iterator, only the subexpressions that are "subscribed to" are returned. Consider
an application that receives input data where the entries are separated using a forward slash. Anything in between
constitutes an item that the application needs to process. With regex_token_iterator, splitting the strings is easy. The
regular expression is very simple.

boost::regex reg("/");

The regex matches the separator of items. To use it for splitting the input, simply pass the special index 1 to the
constructor of regex_token_iterator. Here is the complete program:

int main() {

  boost::regex reg("/");

  std::string s="Split/Values/Separated/By/Slashes,";

  std::vector<std::string> vec;

  boost::sregex_token_iterator it(s.begin(),s.end(),reg,-1);

  boost::sregex_token_iterator end;

  while (it!=end) 

    vec.push_back(*it++);

  assert(vec.size()==std::count(s.begin(),s.end(),'/')+1);

  assert(vec[0]=="Split");

}

Similar to regex_iterator, regex_token_iterator is a template class parameterized on the iterator type for the sequence
it wraps. Here, we're using sregex_token_iterator, which is a typedef for
regex_token_iterator<std::string::const_iterator>. Each time the iterator it is dereferenced, it returns the current
sub_match, and when the iterator is advanced, it tries to match the regular expression again. These two iterator types,
regex_iterator and regex_token_iterator, are very useful; you'll know that you need them when you are considering to
call regex_search multiple times! 

More Regular Expressions

 You have already seen quite a lot of regular expression syntax, but there's still more to know. This section quickly
demonstrates the uses of some of the remaining functionality that is useful in your everyday regular expressions. To
begin, we will look at the whole set of repeats; we've already looked at *, +, and bounded repeats using {}. There's
one more repeat, and that's ?. You may have noted that it is also used to declare non-greedy repeats, but by itself, it
means that the expression must occur zero or one times. It's also worth mentioning that the bounded repeats are very
flexible; here are three different ways of using them:

boost::regex reg1("\\d{5}");

boost::regex reg2("\\d{2,4}");

boost::regex reg3("\\d{2,}");

The first regex matches exactly 5 digits. The second matches 2, 3, or 4 digits. The third matches 2 or more digits,
without an upper limit.

 Another important regular expression feature is to use negated character classes using the metacharacter ^. You use
it to form character classes that match any character that is not part of the character class; the complement of the
elements you list in the character class. For example, consider this regular expression. 

boost::regex reg("[^13579]");

It contains a negated character class that matches any character that is not one of the odd numbers. Take a look at
the following short program, and try to figure out what the output will be.

int main() {

  boost::regex reg4("[^13579]");

  std::string s="0123456789";

  boost::sregex_iterator it(s.begin(),s.end(),reg4);

  boost::sregex_iterator end;

  while (it!=end) 

    std::cout << *it++;

}

Did you figure it out? The output is "02468"that is, all of the even numbers. Note that this character class does not
only match even numbershad the input string been "AlfaBetaGamma," that would have matched just fine too.

 The metacharacter we've just seen, ^, serves another purpose too. It is used to denote the beginning of a line. The
metacharacter $ denotes the end of a line. 

Bad Regular Expressions

 A bad regular expression is one that doesn't conform with the rules that govern regexes. For example, if you happen
to forget a closing parenthesis, there's no way the regular expression engine can successfully compile the regular
expression. When that happens, an exception of type bad_expression is thrown. As I mentioned before, this name will
change in the next version of Boost.Regex, and in the version that's going to be added to the Library Technical
Report. The exception type bad_expression will be renamed to regex_error. 

If all of your regular expressions are hardcoded into your application, you may be safe from having to deal with bad
expressions, but if you're accepting user input in the form of regexes, you must be prepared to handle errors. Here's a
program that prompts the user to enter a regular expression, followed by a string to be matched against the regex. As
always, when there's user input involved, there's a chance that the input will be invalid.

int main() {  

  std::cout << "Enter a regular expression:\n";

  std::string s;

  std::getline(std::cin, s);

  try {

    boost::regex reg(s);

    std::cout << "Enter a string to be matched:\n";

    std::getline(std::cin,s);

    if (boost::regex_match(s,reg))

      std::cout << "That's right!\n";

    else

      std::cout << "No, sorry, that doesn't match.\n";

  }

  catch(const boost::bad_expression& e) {

    std::cout << 

      "That's not a valid regular expression! (Error: " << 

      e.what() << ") Exiting...\n";

  }

}

To protect the application and the user, a try/catch block ensures that if boost::regex throws upon construction, an
informative message will be printed, and the application will shut down gracefully. Putting this program to the test, let's
begin with some reasonable input.

Enter a regular expression:

\d{5}

Enter a string to be matched:

12345

That's right!

Now, here's grief coming your way, in the form of a very poor attempt at a regular expression.

Enter a regular expression:

(\w*))

That's not a valid regular expression! (Error: Unmatched ( or \() Exiting...

An exception is thrown when the regex reg is constructed, because the regular expression cannot be compiled.
Consequently, the catch handler is invoked, and the program prints an error message and exits. There are only three
places where you need to be aware of potential exceptions being thrown. One is when constructing a regular
expression, similar to the example you just saw; another is when assigning regular expressions to a regex, using the
member function assign. Finally, the regex iterators and the algorithms can also throw exceptionsif memory is
exhausted or if the complexity of the match grows too quickly. 





Regex Summary
 That regular expressions are useful and important is not disputed, and this library brings terrific regex power to C++.
Traditionally, users have had few choices besides using the POSIX C APIs for regular expressions. For
text-processing validation tasks, regular expressions are much more scalable and reliable than handcrafted parsers.
For searching and replacing, there are a number of problems that are very elegantly solved using regular expressions,
but virtually impossible to solve without them.

 Boost.Regex is a powerful library so it has not been possible to cover all of it in this chapter. Similarly, the great
expressiveness and range of application of regular expressions necessarily means that this chapter offers little more
than an introduction to them. These topics could easily fill a separate book. To learn more, study the online
documentation for Boost.Regex and pick up a book on regular expressions (consult the Bibliography for suggestions).
Despite the power of Boost.Regex, and the breadth and depth of regular expressions, even complete neophytes can
use regular expressions effectively with this library. For programmers who have selected other programming languages
due to C++'s lack of support for regular expressions, welcome home.

 Boost.Regex is not the only regular expression library available for C++ programmers, but it is certainly one of the
best. It's easy to use and fast as lightning when matching your regular expressions. Use it as often as you can.

 The author of Boost.Regex is Dr. John Maddock.



Part II: Containers and Data
Structures
 This part of the book covers the libraries Boost.Any, Boost.Variant, and Boost.Tuple. They are all containers in
some sense, although they have virtually nothing in common with the Standard Library container types. These are all
extremely useful libraries, which many others and I use to solve programming problems most every day. The problems
they solve are not really covered by either C++ or the C++ Standard Library, and they are thus very important
additions to our library toolbox. It's interesting to ponder how much the availability of basic data structures affect how
we program, and even how we design. Without existing structures, we craft our own, and typically do so with
significant consideration for the solution domain, which limits the reusability of our work. That's a common theme for
all types of programming, of course, and the tradeoff is between genericity and basically just getting the job done. The
value of flexible libraries that addresses both the issues we have at hand, and most issues we are likely to encounter at
a later time, is substantial. These libraries also extend our C++ vocabulary in some sense, and the more users the
libraries have, the larger the community that speaks these words. I am convinced that each of the libraries in this
chapter deserves a place in every C++ professional's toolbox.



Library 6. Any



How Does the Any Library Improve Your Programs?


 Typesafe storage and safe retrieval of arbitrary types


A means to store heterogeneous types in Standard Library containers


Types are being passed through layers that need not know anything about the types

 The Any library provides a type, any, that allows for storage of any type for later retrieval without loss of type safety.
It is like a variant type on steroids: It will hold any type, but you have to know the type to retrieve the value. There are
times when you need to store unrelated types in the same container. There are times when certain code only cares
about conveying data from one point to another without caring about the data's type. At face value, it is easy to do
those things. They can be done with an indiscriminate type such as void*. They can be done using a discriminated
union. There are numerous variant types available that rely on some type tag mechanism. Unfortunately, all of these
suffer from a lack of type safety, and only in the most controlled situations should we ever purposely defeat the type
system. The Standard Library containers are parameterized on the type they contain, which poses a seemingly
impossible challenge for storing elements of heterogeneous types in them. Fortunately, the cure doesn't have to be
spelled void*, because the Any library allows you to store objects of different types for later retrieval. There is no
way to get to the contained value without knowing its exact type, and thus, type safety is preserved.

 When designing frameworks, it isn't possible to know in advance about the types that will be used together with the
framework classes. A common approach is to require the clients of the framework to adapt a certain interface, or
inherit from base classes provided by the framework. This is reasonable, because the framework probably needs to
communicate with various higher-level classes in order to be useful. There are, however, situations where the
framework stores or otherwise accepts types that it doesn't need to (or can) know anything about. Rather than
violating the type system and go with the void* approach, the framework can use any.



How Does Any Fit with the Standard Library?
 One important property of Any is that it provides the capability to store objects of heterogeneous types in Standard
Library containers. It is also a sort of variant data type, which is something sorely needed, and currently missing, in the
C++ Standard Library.





Any

 Header: "boost/any.hpp"

 The class any allows typesafe storage and retrieval of arbitrary types. Unlike indiscriminate types, any preserves the
type, and actually does not let you near the stored value without knowing the correct type. Of course, there are means
for querying for the type, and testing alternatives for the contained value, but in the end, the caller must know the exact
type of the value in an any object, or any denies access. Think of any as a locked safe. Without the proper key, you
cannot get in. any requires the following of the types it stores:



 CopyConstructible It must be possible to copy the type.


Non-throwing destructor As all destructors should be!


Assignable For the strong exception guarantee (types that aren't assignable can still be used with any, but
without the strong guarantee).

 This is the public interface of any:

namespace boost {

  class any {

  public:

    any();

    any(const any&);

    template<typename ValueType>

     any(const ValueType&);

    ~any();

    any& swap(any &);

    any& operator=(const any&);

    template<typename ValueType>

     any& operator=(const ValueType&);

    bool empty() const;

    const std::type_info& type() const;

  };

}

Members

any();

The default constructor creates an empty instance of anythat is, an any that doesn't contain a value. Of course, there is
no way of retrieving the value of an empty any, because no value exists.

any(const any& other);

Creates a distinct copy of an existing any object. The value that is contained in other is copied and stored in this.

template<typename ValueType> any(const ValueType&);

This templated constructor stores a copy of the argument of type ValueType passed to the constructor. The argument
is a const reference, so it is legal to pass a temporary object to be stored in any. Note that the constructor is not
explicit, which would make typical uses of any awkward and would not impart additional safety.

~any();

The destructor destroys the contained value, but note that because the destruction of a raw pointer does not invoke
operator delete or operator delete[] on the pointer, you should always wrap raw pointers in smart pointers such as
shared_ptr (see "Library 1: Smart_ptr 1") when using pointers with any.

any& swap(any& other);

Exchanges the values stored by the two any objects.

any& operator=(const any& other);

Discards the stored value, if the instance of any is not empty, and stores a copy of the value in other.

template<typename ValueType>

  any& operator=(const ValueType& value);

Discards the stored value, if the instance of any is not empty, and stores a copy of value, which can be of an arbitrary
type that fulfills any's requirements.

bool empty() const;

Indicates whether an instance of any currently has a value, regardless of what that value is. Thus, when an any holds a
pointer, empty returns false even if the pointer value is null.

const std::type_info& type() const;

Indicates the type of the stored value. If the any is empty, the type is void.

 Free Functions

template<typename ValueType>

  ValueType any_cast(const any& operand);

any_cast gives you access to the value stored in an any. The argument is the any whose value is to be retrieved. If the
type ValueType does not correspond to the type of the stored value, any throws a bad_any_cast exception. Note
that the syntax is like that of dynamic_cast.

template<typename ValueType>

  const ValueType* any_cast(const any* operand);

This overloaded any_cast takes a pointer to any, and returns a pointer to the stored value. If the type in the any isn't
ValueType, a null pointer is returned. Note, again, that the syntax is like that of dynamic_cast.

template<typename ValueType>

  ValueType* any_cast(any* operand);

This overloaded any_cast is similar to the preceding version, but whereas the previous version used const-qualified
pointers for return type and argument type, this version doesn't.

 Exceptions

bad_any_cast

This exception is thrown when trying to cast an any object to a type other than the type stored in the any.
bad_any_cast is derived from std::bad_cast. Note that when calling any_cast with a pointer argument, no exception is
thrown (similar to how dynamic_cast with pointer types return the null pointer), whereas dynamic_cast to reference
types throws an exception on failure.







Usage
 The Any library resides in namespace boost. You use the class any to store values, and the template function
any_cast to subsequently retrieve the stored values. To use any, include the header "boost/any.hpp". The creation of
an instance capable of storing any conceivable value is straightforward.

boost::any a;

To assign a value of some type is just as easy.

a=std::string("A string");

a=42;

a=3.1415;

Almost anything is acceptable to any! However, to actually do anything with the value contained in an any, we need to
retrieve it, right? For that, we need to know the value's type.

std::string s=boost::any_cast<std::string>(a);

// throws boost::bad_any_cast.

This obviously doesn't work; because a currently contains a double, any_cast throws a bad_any_cast exception. The
following, however, does work.

double d=boost::any_cast<double>(a);

any only allows access to the value if you know the type, which is perfectly sensible. These two elements are all you
need to remember, typewise, for this library: the class any, for storing the values, and the template function any_cast,
to retrieve them.

 Anything Goes!

 Consider three classes, A, B, and C, with no common base class, that we'd like to store in a std::vector. If there is no
common base class, it would seem we would have to store them as void*, right? Well, not any more (pun intended),
because the type of any does not change depending on the type of the value it contains. The following code shows
how to solve the problem.

#include <iostream>

#include <string>

#include <utility>

#include <vector>

#include "boost/any.hpp"

class A {

public:

  void some_function() { std::cout << "A::some_function()\n"; }

};

class B {

public:

  void some_function() { std::cout << "B::some_function()\n"; }

};

class C {

public:

  void some_function() { std::cout << "C::some_function()\n"; }

};

int main() {

  std::cout << "Example of using any.\n\n";

  std::vector<boost::any> store_anything;

  store_anything.push_back(A());

  store_anything.push_back(B());

  store_anything.push_back(C());

  // While we're at it, let's add a few other things as well

  store_anything.push_back(std::string("This is fantastic! "));

  store_anything.push_back(3);

  store_anything.push_back(std::make_pair(true, 7.92));

  void print_any(boost::any& a);

  // Defined later; reports on the value in a

  std::for_each(

    store_anything.begin(),

    store_anything.end(),

    print_any);

}

Running the example produces the following output.

Example of using any.

A::some_function()

B::some_function()

C::some_function()

string: This is fantastic!

Oops!

Oops!

Great, we can store anything we want, but how do we go about retrieving the values that are stored inside the
elements of the vector? In the previous example, we used for_each to call print_any() on each element of the vector.

void print_any(boost::any& a) {

  if (A* pA=boost::any_cast<A>(&a)) {

    pA->some_function();

  }

  else if (B* pB=boost::any_cast<B>(&a)) {

    pB->some_function();

  }

  else if (C* pC=boost::any_cast<C>(&a)) {

    pC->some_function();

  }

}

So far, print_any has tried to retrieve a pointer to an A, B, or C object. This is done with the free function any_cast,
which is parameterized on the type to "cast" to. Look closely at the castwe are trying to unlock the any a by saying
that we believe that a contains a value with the type A. Also note that we pass our any as a pointer argument to the
any_cast function. The return value, therefore, will be a pointer to A, B, or C, respectively. If the any doesn't contain
the type that we used in the cast, the null pointer is returned. In the example, if the cast succeeds, we call the
some_function member function using the returned pointer. But any_cast can also be used with a slight variation.

  else {

    try {

      std::cout << boost::any_cast<std::string>(a) << '\n';

    }

    catch(boost::bad_any_cast&) {

      std::cout << "Oops!\n";

    }

  }

}

Now, this is a bit different. We still perform an any_cast parameterized on the type that we are interested in retrieving,
but rather than passing the instance of any as a pointer, it is passed by const reference. This changes the behavior of
any_cast; in the case of a failurethat is, asking for the wrong typean exception of type bad_any_cast is thrown. Thus,
we have to make sure that we protect the code performing the any_cast with a TRy/catch block if we are not
absolutely sure what type of value is contained in the any argument. This behavioral difference (which is analogous
with that of dynamic_cast) provides you with a great degree of flexibility. In cases where a cast failure is not an error,
pass a pointer to an any, but if a cast failure is an error, pass by const reference, which makes any_cast throw an
exception on failure.

 Using any enables you to use the Standard Library containers and algorithms in situations not heretofore possible,
thus allowing you to write more maintainable and understandable code.

 A Property Class

 Let's say that we want to define a property class for use in containers. We'll store the names of the properties as
strings, and the values can be of any type. Although we could add the requirement that all values be derived from a
common base class, that is often not viable. For instance, we may not have access to the source code for all of the
classes that we need to use as property values, and some values can be built-in types, which cannot be derived from.
(Besides, it wouldn't make for a good any example.) By storing the type of the value in an instance of any, we can
leave it to the clients to handle the property values they know about and are interested in.

#include <iostream>

#include <string>

#include <vector>

#include <algorithm>

#include "boost/any.hpp"

class property {

  boost::any value_;

  std::string name_;

public:

  property(

    const std::string& name,

    const boost::any& value)

  : name_(name),value_(value) {}

  std::string name() const { return name_; }

  boost::any& value() { return value_; }

  friend bool operator<

    (const property& lhs, const property& rhs) {

    return lhs.name_<rhs.name_;

  }

};

This simple property class has a name stored in a std::string for identification, and an any to hold the value. The
flexibility that any brings the implementation is that we are able to use built-in types and user-defined types without
changing the property class. Be it simple or complex, an instance of any can always store anything. Of course, using
any also means that we cannot know in advance that there is some set of operations that can always be performed on
the value stored in a propertywe need to retrieve the value first. This implies that if there is a known set of types that
are applicable for use with a property class, we may elect to use a different implementation than any. That's a rare
situation when designing frameworksif we don't require a certain base class, all we can safely say is that we have
absolutely no idea what classes may be sent our way. When you can get any type and don't need to do anything with
it but hold it for a while and give it back, you'll find that any is ideal. Notice that the property class provides operator<
to allow the class to be stored in Standard Library associative containers; even without that operator, property would
work fine with the sequence containers.

 The following program uses our new and flexiblethanks to any!property class. Instances of the property class are
stored in a std::map, where the names of the properties are used as the keys.

void print_names(const property& p) {

  std::cout << p.name() << "\n";

}

int main() {

  std::cout << "Example of using any for storing properties.\n";

  std::vector<property> properties;

  properties.push_back(

    property("B", 30));

  properties.push_back(

    property("A", std::string("Thirty something")));

  properties.push_back(property("C", 3.1415));

  std::sort(properties.begin(),properties.end());

  std::for_each(

    properties.begin(),

    properties.end(),

    print_names);

  std::cout << "\n";

  std::cout <<

    boost::any_cast<std::string>(properties[0].value()) << "\n";

  std::cout <<

    boost::any_cast<int>(properties[1].value()) << "\n";

  std::cout <<

    boost::any_cast<double>(properties[2].value()) << "\n";

}

Notice that we didn't have to explicitly create the anys needed for property's constructor. That's because any's
converting constructor isn't explicit. Although constructors taking one argument should typically be declared explicit,
any is an exception to the rule. Running the program gives us this output.

Example of using any for storing properties.

A

B

C

Thirty something

30

3.1415

In this example, because the container was sorted, we retrieved the properties by index, and as we knew their
respective types beforehand, we didn't need a try/catch block for the retrieval. When retrieving the value of an
instance of any, pass the any by const reference to any_cast if a failure indicates a real error.

std::string s=boost::any_cast<std::string>(a);

When a failure is not necessarily an error, pass the any by pointer.

std::string* ps=boost::any_cast<std::string>(&a);

The different styles of getting the stored value differ not only in semantics, but also how they return the stored value. If
you pass a pointer argument, you get a pointer to the stored value; if you pass a const reference argument, you get a
copy of the value.

 If the value type is expensive to copy, pass the any by pointer to avoid copying the value.

 There's More to any

 There are a few more member functions provided by any, such as testing whether an instance of any is empty or not,
and swapping the values of two instances of any. The following example shows how to use them.

#include <iostream>

#include <string>

#include "boost/any.hpp"

int main() {

  std::cout << "Example of using any member functions\n\n";

  boost::any a1(100);

  boost::any a2(std::string("200"));

  boost::any a3;

  std::cout << "a3 is ";

  if (!a3.empty()) {

    std::cout << "not ";

  }

  std::cout << "empty\n";

  a1.swap(a2);

  try {

    std::string s=boost::any_cast<std::string>(a1);

    std::cout << "a1 contains a string: " << s << "\n";

  }

  catch(boost::bad_any_cast& e) {

    std::cout << "I guess a1 doesn't contain a string!\n";

  }

  if (int* p=boost::any_cast<int>(&a2)) {

    std::cout << "a2 seems to have swapped contents with a1: "

      << *p << "\n";

  }

  else {

    std::cout << "Nope, no int in a2\n";

  }

  if (typeid(int)==a2.type()) {

    std::cout << "a2's type_info equals the type_info of int\n";

  }

}

Here's the output from running the program.

Example of using any member functions

a3 is empty

a1 contains a string: 200

a2 seems to have swapped contents with a1: 100

a2's type_info equals the type_info of int

Let's examine that code more closely. To test whether an instance of any contains a value, we called the member
function empty. We tested the any a3 like this.

std::cout << "a3 is ";

if (!a3.empty()) {

  std::cout << "not ";

}

std::cout << "empty\n";

Because we default constructed a3, a3.empty() returns TRue. The next thing is to swap the contents of a1 with a2.
You may wonder why you'd want to swap their contents. One plausible scenario is when the identities of the any
instances are important (swap only exchanges the contained values). Another reason is to avoid copying when you
don't need to keep the original value.

a1.swap(a2);

Finally, we use the member function type, which returns a const std::type_ info&, to test if the contained value is of the
type int.

if (typeid(int)==a2.type()) {

Note that if an any stores a pointer type, that is reflected in the returned std::type_info.

 Storing Pointers in any

 Often, the test for empty is enough to know whether the object really contains something valid. However, if an any
might hold a pointer, be extra careful to test the pointer before trying to dereference it. Simply testing whether the any
is empty is not enough, because an any is not considered to be empty when it holds a pointer, even if that pointer is
null.

boost::any a(static_cast<std::string*>(0));

if (!a.empty()) {

  try {

    std::string* p=boost::any_cast<std::string*>(a);

    if (p) {

          std::cout << *p;

    }

    else {

      std::cout << "The any contained a null pointer!\n";

    }

  }

  catch(boost::bad_any_cast&) {}

}

A Better WayUsing shared_ptr

 Another complication when storing raw pointers in any is the destruction semantics. The any class accepts ownership
of the value it stores, because it keeps an internal copy of the value, which is destroyed together with the any.
However, destroying a raw pointer doesn't invoke delete or delete[] on it! It only reclaims the memory occupied by
the pointer. This makes storing a raw pointer in any problematic, so it's a good idea to use smart pointers instead.
Indeed, using smart pointers (see "Library 1: Smart_ptr 1") is an ideal way to store a pointer to data in an any. This
solves the problem of making sure that the memory associated with a contained pointer is properly deleted. When the
smart pointer is destroyed, it takes appropriate action to ensure the memory and any data in it are properly destroyed.
By contrast, note that std::auto_ptr is not appropriate. This is because auto_ptr doesn't have normal copy semantics;
accessing the value in an any would transfer ownership of the memory and any data in it from the any to the returned
auto_ptr.

 Consider the following code. 

#include <iostream>

#include <string>

#include <algorithm>

#include <vector>

#include "boost/any.hpp"

#include "boost/shared_ptr.hpp"

First, we'll define two classes, A and B, each with operations is_virtual, which is virtual, and not_virtual, which is not
virtual (had it been virtual, the name would be an extremely bad choice). We want to store objects of these types in
anys.

class A {

public:

  virtual ~A() {

    std::cout << "A::~A()\n";

  }

  void not_virtual() {

    std::cout << "A::not_virtual()\n";

  }

  virtual void is_virtual () {

    std::cout << "A:: is_virtual ()\n";

  }

};

class B : public A {

public:

  void not_virtual() {

    std::cout << "B::not_virtual()\n";

  }

  virtual void is_virtual () {

    std::cout << "B:: is_virtual ()\n";

  }

};

Let's now define a free function, foo, which accepts an argument that is a reference to any and that examines the any
using any_casts to the types that the function knows how to handle. If there's no match, the function simply ignores the
any and returns. It tests for the types shared_ptr<A> and shared_ptr<B>, respectively, and calls is_virtual (the virtual
function) and not_virtual on them. 

void foo(boost::any& a) {

  std::cout << "\n";

  // Try boost::shared_ptr<A>

  try {

    boost::shared_ptr<A> ptr=

      boost::any_cast<boost::shared_ptr<A> >(a);

    std::cout << "This any contained a boost::shared_ptr<A>\n";

    ptr-> is_virtual ();

    ptr->not_virtual();

    return;

  }

  catch(boost::bad_any_cast& e) {}

  // Try boost::shared_ptr<B>

  try {

    boost::shared_ptr<B> ptr=

      boost::any_cast<boost::shared_ptr<B> >(a);

    std::cout << "This any contained a boost::shared_ptr<B>\n";

    ptr-> is_virtual ();

    ptr->not_virtual();

    return;

  }

  catch(boost::bad_any_cast& e) {}

  // If anything else (like just a string), ignore it

  std::cout <<

    "The any didn't contain anything that \

     concerns this function!\n";

}

In main, we create two anys at function scope. We then introduce a new scope, and create two new anys. Next, we
store all of the anys in the vector and send every element in it to the function foo, which examines their contents and
exercises them. It should be duly noted that we are actually violating the advice that was given earlier, to use the
pointer form of any_cast when a failure does not designate an error. However, because we are dealing with smart
pointers here, the syntactic advantage of using the exception-throwing form of any_cast is reason enough to ignore the
advice this time.

int main() {

  std::cout << "Example of any and shared_ptr\n";

  boost::any a1(boost::shared_ptr<A>(new A));

  boost::any a2(std::string("Just a string"));

  {

    boost::any b1(boost::shared_ptr<A>(new B));

    boost::any b2(boost::shared_ptr<B>(new B));

    std::vector<boost::any> vec;

    vec.push_back(a1);

    vec.push_back(a2);

    vec.push_back(b1);

    vec.push_back(b2);

    std::for_each(vec.begin(),vec.end(),foo);

    std::cout << "\n";

  }

  std::cout <<

    "any's b1 and b2 have been destroyed which means\n"

    "that the shared_ptrs' reference counts became zero\n";

}

When this program is run, it produces the following output. 

Example of any and shared_ptr

This any contained a boost::shared_ptr<A>

A:: is_virtual ()

A::not_virtual()

The any didn't contain anything that concerns this function!

This any contained a boost::shared_ptr<A>

B:: is_virtual ()

A::not_virtual()

This any contained a boost::shared_ptr<B>

B:: is_virtual ()

B::not_virtual()

A::~A()

A::~A()

First, we see that the any passed to foo contains a shared_ptr<A>, which also happens to own an instance of A. The
output is what one would expect.

 Next, the any contains the string that we added to our vector. This shows that it is quite possible, and often
reasonable, to store types that are unknown to some of the functions that will be called with an any argument; the
functions only need to handle the types they are required to operate on! 

Then things get really interestingthe third element contains a shared_ptr<A> that is pointing to an instance of B. This is
an example of how polymorphism works just the same for any as for other types. Of course, if we were using raw
pointers, we could have used static_cast to store the pointer as the type that we want to be the identification tag that
unlocks the any. Note that the function A::not_virtual is called instead of B::not_virtual. The reason is that the static
type of the pointer is A*, not B*.

 The final element contains a shared_ptr<B> that also points to an instance of B. Again, we are controlling the type
stored in any, which sets the preferences for those who later try to unlock it.

 At the end of the inner scope, the vector is destroyed, which destroys the contained instances of any, which in turn
destroys the shared_ptrs, effectively setting the reference counts to zero. Consequently, this means that our pointers
are safely and effortlessly destroyed as well!

 This example shows something that's more important than how to use smart pointers together with any; it (again)
shows that it doesn't really matter how simple or complex the type that we store in any is. If the cost of copying the
stored values is prohibitive, or if shared usage and lifetime control is an issue, consider using smart pointers, just as
when using the Standard Library containers to store the values. The exact same reasoning applies equally well to using
any, and often the two principles coincide, as it is common to use any as a means to store heterogeneous types in
containers. 

What About Input and Output Operators?

 A common question from users of any is "why aren't there input and output operators?" There are indeed good
reasons for that. Let's start with the input operator. What would be the semantics for input? Would it default to a
string type? Would the current type held by the any be used for extraction from the stream? If so, why would an any
be used in the first place? These questions come without good answers, and that's the reason why there's no input
operator for any. Answering the second question is not as easy, but almost. Supplying a forwarding output operator
for any would mean that any is no longer capable of storing arbitrary types as that operator would impose the same
requirement on the types stored by any. It wouldn't even matter if we never intended to use operator<<; an
instantiation of an any containing a type that doesn't have an output operator is still illegal, and results in an error when
compiling. Of course, were we to provide a template version of operator<<, we would be able to use any without
requiring that the contained types support streaming, but as soon as that operator is instantiated, the requirement is on.

 There seems to be a cure for missing operators, right? What if we were to supply a valid output operator for any that
matches anything, and introduce that operator<< in a scope that is only accessible from the implementation details of
the any class? That way, we could elect to throw an exception or return an error code when an output to a stream
was performed (the function would only match for arguments without support for operator<<), and we could do this
at runtime, without affecting the legality of any other code. This idea struck me as so appealing that I gave it a try on a
few of the compilers I have at hand. The results were not good. I won't go into detail, but in short, the solution
requires techniques that many compilers can't currently handle. However, we don't necessarily need to change the any
classwe could create a new class that takes advantage of any to store arbitrary types, and have that class support
operator<<. Basically, we need to do whatever it is any does to keep track of the contained type to know how to
write the output, and then add the output streaming. 

Adding Support for Outputany_out

 We will define a class that is capable of output through operator<<. This adds to the requirements of the types that
are to be stored; to be a valid type for storage in the class any_out, the type must support operator<<.

#include <iostream>

#include <vector>

#include <string>

#include <ostream>

#include "boost/any.hpp"

class any_out {

The any_out class stores the (arbitrary) value in a datum of type boost::any. Always select reuse over reinvention!

boost::any o_;

Next, we declare an abstract class streamer, which uses the same design as any. We cannot use a parameterized type
directly, because we would then need to parameterize any_out as well, which in turns makes the type of any_out
dependent on the type of its contained value, effectively rendering the class useless in the context of heterogeneous
storage. The type of the contained value must not be a part of the signature for the any_out class.

struct streamer {

  virtual void print(std::ostream& o,boost::any& a)=0;

  virtual streamer* clone()=0;

  virtual ~streamer() {}

};

Here's the trick: We add a parameterized class, streamer_imp, parameterized on the contained type and inheriting
from streamer. Thus, we are able to store a pointer to streamer in any_out, and rely on polymorphism to do the rest
of the work (next, we'll add a virtual member function for that purpose).

template <typename T> struct streamer_imp : public streamer {

Now, let's implement a virtual function print to output the value contained in the any by performing an any_cast on the
type that streamer_imp is parameterized with. Because we're going to instantiate a streamer_imp on the same type as
the value put in the any, the cast doesn't fail.

virtual void print(std::ostream& o,boost::any& a) {

  o << *boost::any_cast<T>(&a);

}

A cloning function is needed when an any_out is being copiedwe are going to store a pointer to streamer, so the
virtual function clone takes care of copying the correct type of streamer. 

  virtual streamer* clone() {

    return new streamer_imp<T>();

  }

};

class any_out {

  streamer* streamer_;

  boost::any o_;public:

The default constructor creates an empty any_out, and sets the streamer pointer to zero.

any_out() : streamer_(0) {}

The most interesting function for any_out is the parameterized constructor. The type T, deduced from the type of the
value to store, is used when creating the streamer. The value is stored in the any o_.

template <typename T> any_out(const T& value) :

  streamer_(new streamer_imp<T>),o_(value) {}

Copy construction is straightforward; all we need is to make sure that the streamer in the source any_out a is not zero.
 [View full width]

any_out(const any_out& a)

  : streamer_(a.streamer_?a.streamer_->clone():0),o_(a.o_) {}[1]

template<typename T> any_out& operator=(const T& r) {

  any_out(r).swap(*this);

  return *this;

}

any_out& operator=(const any_out& r) {

  any_out(r).swap(*this);

  return *this;

}

~any_out() {

  delete streamer_;

}

[1] Rob Stewart asked me whether I wrote this line to go for first prize in an obfuscation contest or if I just wanted
to be able to write the ():0) emoticon. I'm not really sure, but decided to keep the line for your reading
pleasure….

 The swap function is supplied to facilitate exception-safe assignment.

any_out& swap(any_out& r) {

  std::swap(streamer_, r.streamer_);

  std::swap(o_,r.o_);

  return *this;

}

And now, let's add what we came here for: the output operator. It should accept a reference to an ostream and an
any_out. The any stored in the any_out should be passed on to the virtual function print of the streamer.

  friend std::ostream& operator<<(std::ostream& o,any_out& a) {

    if (a.streamer_) {

      a.streamer_->print(o,a.o_);

    }

    return o;

  }

};

This class not only offers a way to perform stream output of arbitrary (unknown) types contained in a general class, it
is also a display of how any is designed. This design, and the techniques used to safely wrap the type behind a
polymorphic facade are general, and applicable in more cases than this. For instance, it would be possible to create a
generic function adaptor.

 Let's take our any_out class for a test drive.

int main() {

  std::vector<any_out> vec;

  any_out a(std::string("I do have operator<<"));

  vec.push_back(a);

  vec.push_back(112);

  vec.push_back(65.535);

  // Print everything in vector vec

  std::cout << vec[0] << "\n";

  std::cout << vec[1] << "\n";

  std::cout << vec[2] << "\n";

  a=std::string("This is great!");

  std::cout << a;

}

If the class X does not support operator<<, the code does not compile. Unfortunately, it doesn't matter whether we
are actually going to use operator<< or not, it just doesn't work. any_out always requires that the output operator be
available.

  any_out nope(X());

  std::cout << nope;

}

Convenient, don't you think? If a certain operation is available for all types that you plan to use in a certain context,
adding those can be done in the same way we did to supply operator<< for our any_out class. It is not much harder
to generalize the solution and parameterize on the operations, which makes this solution for extending the interface of
any reusable. 

Predicates

 Before we end this section on the usage of any, let's examine how to build functionality around any to simplify usage
and to add expressive power. When any is used to enable storage of different types in container classes, it turns out
that it's easy to store those values but quite hard to operate on them.

 First, we will create two predicates, is_int and is_string, which can be used to determine if an any contains an int or a
string, respectively. These can be useful when we want to search for a particular type in a container of heterogeneous
objects, or want to test the type of an any to determine further actions. The implementation uses the any member
function type for the test.

bool is_int(const boost::any& a) {

  return typeid(int)==a.type();

}

bool is_string(const boost::any& a) {

  return typeid(std::string)==a.type();

}

The preceding solution works, but it is tedious to write predicates for every type we are interested in testing for. The
implementation is repeated, so this would be the perfect fit for a template solution like the following.

template <typename T> bool contains (const boost::any& a) {

  return typeid(T)==a.type();

}

The function contains saves us from having to manually create new predicates. This is a canonical example of how
templates are used to minimize redundant coding. 

Counting Non-Empty Values

 For certain applications, it is useful to iterate over the elements of a container and test whether the anys contain a
value or not. An empty any might imply that it should be removed, or perhaps we need to extract all non-empty
elements of any for some further processing. To make this useful in an algorithm, we create a function object with a
function call operator taking an any argument. The operator just tests whether the any is empty and, if it is not,
increments the counter.

class any_counter {

  int count_;

public:

  any_counter() : count_(0) {}

  int operator()(const boost::any& a) {

    return a.empty() ? count_ : ++count_;

  }

  int count() const { return count_; }

};

For a container C storing values of any, counting the non-empty values is accomplished like this.

int i=std::for_each(C.begin(),C.end(),any_counter()).count();

Note that the for_each algorithm returns the function object, so we can easily access the count. Because for_each
accepts its arguments by value, the following code does not accomplish the same thing.

any_counter counter;

std::for_each(C.begin(),C.end(),counter);

int i=counter.count();

The second version always yields 0, because the function object counter simply is copied when calling the for_each.
The first version works, because the returned function object (the copy of counter) is used for retrieving the count. 

Extracting Elements of Certain Types from a Container

 Here's an extra treat: An extractor for retrieving certain types from a container. This can be a useful utility when parts
of a heterogeneous container are to be transferred to a homogeneous container. Manually, this is a tedious and
error-prone task, but one simple function object takes care of everything for us. We will parameterize the function
object on the type of output iterator for the retrieved elements, and the type to extract from the any arguments that are
passed to it.

template <typename OutIt,typename Type> class extractor {

  OutIt it_;

public:

  extractor(OutIt it) : it_(it) {}

  void operator()(boost::any& a) {

    Type* t(boost::any_cast<Type>(&a));

    if (t) {

      *it_++ = *t;

    }

  }

};

As a convenience for creating an extractor, here's a function that deduces the type of the output iterator and returns an
appropriate extractor.

template <typename Type, typename OutIt>

  extractor<OutIt,Type>   make_extractor(OutIt it) {

    return extractor<OutIt,Type>(it);

  }

Using the Predicates and the Extractor

 It's high time to test our new any companions with a sample program.

int main() {

   std::cout << "Example of using predicates and the "

    "function object any_counter\n";

  std::vector<boost::any> vec;

  vec.push_back(boost::any());

  for(int i=0;i<10;++i) {

    vec.push_back(i);

  }

  vec.push_back(boost::any());

We have added 12 any objects to the vec, and now we're interested in finding out how many of the elements contain
a value. To count elements with values, we use the function object any_counter that we've created.

// Count the instances of any that contain a value

int i=std::for_each(

  vec.begin(),

  vec.end(),

  any_counter()).count();

std::cout

  << "There are " << i << " non-empty any's in vec\n\n";

Here is how the extractor function object that operates on a container of anys works, populating a new container with
a certain type collected from the source container. 

  // Get all ints in vec

std::list<int> lst;

std::for_each(vec.begin(),vec.end(),

  make_extractor<int>(std::back_inserter(lst)));

std::cout << "Found " << lst.size() << " ints in vec\n\n";

Let's clear the contents of the container vec and add some new values.

vec.clear();

vec.push_back(std::string("This is a string"));

vec.push_back(42);

vec.push_back(3.14);

Now, let's try the predicates that we created. First, we use the two predicates that indicate whether an any contains a
string or an int, respectively.

if (is_string(vec[0])) {

  std::cout << "Found me a string!\n";

}

if (is_int(vec[1])) {

  std::cout << "Found me an int!\n";

}

As we concluded earlier, defining predicates for every type we are ever interested in is tedious and utterly
unnecessary, when we can use the language to our advantage in a straightforward manner. 

  if (contains<double>(vec[2])) {

    std::cout <<

      "The generic tool is sweeter, found me a double!\n";

  }

}

Running this example gives you this output.

Example of using predicates and the function object any_counter

There are 10 non-empty any's in vec

Found 10 ints in vec

Found me a string!

Found me an int!

The generic tool is sweeter, found me a double!

Small and simple tools like these have proven to be very useful. Of course, this is not only true for any; it's a property
of the design of the Standard Library containers and algorithms. The examples show how to take advantage of
function composition together with any. Providing filtering, counting, operations on certain types, and so forth are
powerful ways of hiding implementation details, and simplifying the usage of any. 

Complying with the Requirements of Standard Library Adapters

 If you found the predicate contains useful, you may have noticed that it is not quite all it can be. There is no way to
use it together with the Standard Library adapters. The following example is slightly outside the scope of this chapter,
but because any fits so well with the container classes, it would be a shame to leave a somewhat flawed predicate of
contains as is. The problem is that the Standard Library adapters (bind1st, bind2nd, not1, and not2) impose
requirements on the predicates they adapt. The type of the argument and the result type must be exposed through
provided typedefs, and that means that we need a function object rather than a function.

 First comes the definition of our new function object, contains_t. It could have inherited from the helper class
std::unary_function (part of the C++ Standard Library, intended to facilitate the creation of the correct typedefs) and
have the argument and result types defined automatically, but to make things clear, the required typedefs are provided
explicitly. The argument type has changed from const boost::any& to boost::any, to avoid a potential
reference-to-reference, which is illegal. The implementation is just as before, only here it is placed in the function call
operator.

template <typename T> struct contains_t {

  typedef boost::any argument_type;

  typedef bool result_type;

  bool operator()(boost::any a) const {

    return typeid(T)==a.type();

  }

};

To save the name contains for subsequent use in the helper function that's soon to come, the name of the function
object is contains_t. Here is a helper function that creates and returns an instance of contains_t with the appropriate
type set automatically. The reason is that we want to overload contains so that we are still able to provide the original
predicate that we created. 

template <typename T> contains_t<T> contains() {

  return contains_t<T>();

}

Finally, the good old predicate is changed to take advantage of the contains_t implementation. Now, if we need to
change the implementation of contains_t for some reason, contains will reflect those changes without any further effort.

template <typename T> bool contains(const boost::any& a) {

  return contains_t<T>()(a);

}

Here's a sample program that demonstrates what we have gained, using both the new function object and the
predicate from the previous example.

int main() {

  std::cout << "Example of using the improved is_type\n";

  std::vector<boost::any> vec;

  vec.push_back(std::string("This is a string"));

  vec.push_back(42);

  vec.push_back(3.14);

Using the predicate is no different than before. Testing an any for a certain type is still easy. 

if (contains<double>(vec[2])) {

  std::cout << "The generic tool has become sweeter! \n";

}

vec.push_back(2.52f);

vec.push_back(std::string("Another string"));

Another example of the use of contains is to search a container for occurrences of a certain type. This example finds
the first float.

std::vector<boost::any>::iterator

  it=std::find_if(vec.begin(),vec.end(),contains<float>());

As yet another reminder, the two ways of retrieving the contained value of an any are demonstrated. Pass the any to
any_cast by const reference for the exception-throwing version. Pass the address of the any to return a pointer to the
stored value. 

if (it!=vec.end()) {

  std::cout << "\nPrint the float twice!\n";

  std::cout << boost::any_cast<float>(*it) << "\n";

  std::cout << *boost::any_cast<float>(&*it) << "\n";

}

std::cout <<

  "There are " << vec.size() << " elements in vec\n";

I still haven't given a good example of why contains should be a full-fledged function object. In many cases, the
reasons why may not be known beforehand, because we cannot anticipate every situation that our implementations
will face. That's a strong reason to comply with the requirements of the Standard Library facilities, preferably in more
than just the use cases that we are currently aware of. Nevertheless, I do have an example for you: The task is to
remove all elements from a container vec that do not contain strings. Of course, writing another predicate that does
the exact opposite of contains is one alternative, but that's an alternative that quickly can lead to maintenance
nightmares, because of proliferation of function objects with similar work descriptions. The Standard Library provides
us with an adapter called not1, which negates the result of an invocation of a function object, and this makes it trivial
to clean out all non-string elements from our vector vec.

  vec.erase(std::remove_if(vec.begin(),vec.end(),

  std::not1(contains<std::string>())),vec.end());

  std::cout << "Now, there are only " << vec.size()

    << " elements left in vec!\n";

}

The examples in this section have demonstrated how to make effective use of any. Because the type of the stored
value is not part of any's type, any is an essential tool when providing storage without imposing requirements on the
stored types, including inheriting from a certain base class. We have seen that there is a price for this type hiding. any
disallows access to the stored value without knowledge of the value's type, restricting opportunities to operate on the
stored values. To a large extent, this can be amended by creating helper classespredicates and function objectsthat
provide the necessary logic to access the values. 





Any Summary
 Discriminated types can contain values of different types and are quite different from indiscriminate (read void*)
types. We always depend heavily on type safety in C++, and there are few situations in which we are willing to do
without it.

 This is for good reasons: Type safety keeps us from making mistakes and improves the performance of our code. So,
we avoid indiscriminate types. Still, it is not uncommon to find oneself in need of heterogeneous storage, or to insulate
clients from the details of types, or to gain the utmost flexibility at lower levels of a hierarchy. any provides this
functionality while maintaining full type safety, and that makes it an excellent addition to our toolbox!

 Use the Any library when


 You need to store values of heterogeneous types in containers


Storage for unknown types is required


Types are being passed through layers that need not know anything about the types

 The design of Any also serves as a valuable lesson on how to encapsulate a type without effect on the type of the
enclosing class. This design can be used to create generic function objects, generic iterators, and much more. It is an
example of the power of encapsulation and polymorphism in conjunction with templates.

 In the Standard Library, there are excellent tools for storing collections of elements. When the need for storage of
heterogeneous types arises, we want to avoid having to use new collection types. any offers a solution that works in
many cases with existing containers. In a way, the template class any extends the capabilities of the Standard Library
containers by packaging disparate types in a homogeneous wrapper that allows them to be made elements of those
aforementioned containers.

 Adding Boost.Any to an existing code base is straightforward. It doesn't require changes to the design, and
immediately increases flexibility where it's applied. The interface is small, making it a tool that is easily understood.

 The Any library was created by Kevlin Henney, and like all Boost libraries, has been reviewed, influenced, and
refined by the Boost community.
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How Does the Variant Library Improve Your Programs?


 Typesafe storage and retrieval of a user-specified set of types


A means to store heterogeneous types in Standard Library containers


Compile-time checked visitation of variants


Efficient, stack-based storage for variants

 The Variant library focuses on typesafe storage and retrieval of a bounded set of typesthat is, on discriminated
unions. The Boost.Variant library has many features in common with Boost.Any, but there are different tradeoffs as
well as differences in functionality. The need for discriminated unions (variant types) is very common in everyday
programming. One typical solution while retaining type safety is to use abstract base classes, but that's not always
possible; even when it is, the cost of heap allocation and virtual functions[1] may be too high. One might also try using
unsafe indiscriminate types such as void* (which leads to disaster), or typesafe but unbounded variant types, such as
Boost.Any. The library we look at hereBoost.Variantsupports bounded variant typesthat is, variants where the
elements come from a set of supported types.

[1] Although virtual functions do come with a very reasonable price with regard to performance.

 Variant types are available in many other programming languages, and they have proven their worth time and again.
There is very limited built-in support in C++ for variant types, only in the form of unions, that exist mainly for C
compatibility. Boost.Variant remedies the situation through a class template variant, and accompanying tools for safely
storing and retrieving values. A variant data type exposes an interface independent of the current value's type. If
you've used some proprietary variant types before, you may have been exposed to types that only support a fixed set
of types. That is not the case with this library; you define the set of types that are allowed in a variant when you use it,
and a program can contain any number of disparate variant instantiations. To retrieve the value that is held in a variant,
you either need to know the exact type of the current value, or use the provided typesafe visitor mechanism. The
visitor mechanism makes Variant quite different from most other variant libraries, including Boost.Any (which on the
other hand can hold a value of any conceivable type), and thereby enables a safe and robust environment for handling
such types. C++ unions are only useful for built-in types and POD types, but this library offers discriminated union
support for all types. Finally, efficiency aspects are covered, too, as the library stores its values in stack-based
storage, thus avoiding more expensive heap allocations.



How Does Variant Fit with the Standard Library?
 Boost.Variant permits storing heterogeneous types in the Standard Library containers. As there is no real support for
variant types in C++, or in the C++ Standard Library, this makes Variant an excellent and useful extension to the
Standard Library.





Variant

 Header: "boost/variant.hpp"

 This contains all of the Variant library through a single header file.

"boost/variant/variant_fwd.hpp"

contains forward declarations of the variant class templates.

"boost/variant/variant.hpp"

contains the definitions for the variant class templates.

"boost/variant/apply_visitor.hpp"

contains the functionality for applying visitors to variants.

"boost/variant/get.hpp"

contains the template function get.

"boost/variant/bad_visit.hpp"

contains the definition for the exception class bad_visit.

"boost/variant/static_visitor.hpp"

contains the definition for the visitor class template.

 The following partial synopsis covers the most important members of the variant class template. Other functionality,
such as the visitation mechanism, direct typesafe value retrieval, and advanced features such as creating the set of
types through type sequences, are described in the "Usage" section.

namespace boost {

  template <typename T1,typename T2=unspecified, ...,

    typename TN=unspecified>

  class variant {

  public:

    variant();

    variant(const variant& other);

    template <typename T> variant(const T& operand);

    template <typename U1, typename U2, ..., typename UN>

      variant(const variant<U1, U2, ..., UN>& operand);

    ~variant();

    template <typename T> variant& operator=(const T& rhs);

    int which() const;

    bool empty() const;

    const std::type_info& type() const;

    bool operator==(const variant& rhs) const;

    bool operator<(const variant& rhs) const;

  };

}

Members

variant();

This constructor default constructs the first type of the set of types for the variant. This means that the first type used
when declaring the variant type must be default constructible, or else the variant type itself cannot be default
constructed. This constructor propagates any exceptions thrown from the first type's constructor.

variant(const variant& other);

The copy constructor copies the current value of other, propagating any exceptions thrown from other's current type's
copy constructor.

template <typename T> variant(const T& operand);

This constructor creates a new variant from operand. The operand, of type T, must be unambiguously convertible to
one of the set of bound types. Exceptions thrown when copying or converting the operand are propagated.

template <typename U1,typename U2,...,typename UN>

  variant(const variant<U1,U2,...,UN>& operand);

This constructor allows construction from another variant type, where for each of the types U1, U2…UN, there exists
an unambiguous conversion to T1,T2…TN (the set of types of the variant being constructed). Exceptions thrown
when copying or converting the operand are propagated.

~variant();

Destroys the variant, and calls the destructor for the active value. Note that for pointer types, the destructor is not
called (destroying the pointer is a no-op). This destructor never throws.

template <typename T> variant& operator=(const T& rhs);

This operator discards the current value and assigns the value rhs. The type T must be unambiguously convertible to
one of the bound types in the variant. If T is the type of the current value in the variant, rhs is copy assigned to the
current value; any exceptions thrown by T's copy assignment operator, if any, will propagate. If the variant's current
value's type is not T, the current value is replaced by one created by the (copy) constructor of the type,
corresponding to T, selected from the set of bound types. Any exceptions thrown by that constructor will propagate.
This function may also throw bad_alloc.

int which() const;

Returns the zero-based index, in the set of bounded types, of the current value's type. This function never throws.

bool empty() const;

This function always returns false, because a variant is never empty. This function exists to allow generic code to treat
variants and boost::anys uniformly. This function never throws.

const std::type_info& type() const;

Returns the type_info for the current value. This function never throws.

bool operator==(const variant& rhs) const;

Returns true if *this and rhs are equal, which means that which()==rhs.which() and the current value of *this and rhs
are equal according to the equality operator of the current value's type. This necessitates that all of the bounded types
be EqualityComparable. Any exceptions thrown by operator== of the current value's type are propagated.

bool operator<(const variant& rhs) const;

The less than comparison returns which()<rhs.which() or if the indices are equal, it returns the result of calling
operator< on the current value of *this and rhs. Any exceptions thrown by operator< of the current value's type are
propagated.







Usage
 To start using variants in your programs, include the header "boost/variant.hpp". This header includes the entire
library, so you don't need to know which individual features to use; later, you may want to reduce the dependencies
by only including the relevant files for the problem at hand. When declaring a variant type, we must define the set of
types that it will be capable of storing. The most common way to accomplish this is using template arguments. A
variant that is capable of holding a value of type int, std::string, or double is declared like this.

boost::variant<int,std::string,double> my_first_variant;

When the variable my_first_variant is created, it ends up containing a default-constructed int, because int is first
among the types that the variant can contain. We can also pass a value that is convertible to one of those types to
initialize the variant.

boost::variant<int,std::string,double>

  my_first_variant("Hello world");

At any give time, we can assign a new value, and as long as the new value is unambiguously and implicitly convertible
to one of the types that the variant can contain, it works perfectly.

my_first_variant=24;

my_first_variant=2.52;

my_first_variant="Fabulous!";

my_first_variant=0;

After the first assignment, the contained value is of type int; after the second, it's a double; after the third, it's a
std::string; and then finally, it's back to an int. If we want to see that this is the case, we can retrieve the value using the
function boost::get, like so:

assert(boost::get<int>(my_first_variant)==0);

Note that if the call to get fails (which would happen if my_first_variant didn't contain a value of type int), an exception
of type boost::bad_get is thrown. To avoid getting an exception upon failure, we can pass a pointer to a variant to get,
in which case get returns a pointer to the value or, if the requested type doesn't match the type of the value in the
variant, it returns the null pointer. Here's how it is used:

int* val=boost::get<int>(&my_first_variant);

assert(val && (*val)==0);

The function get is a very direct way of accessing the contained valuein fact, it works just like any_cast does for
boost::any. Note that the type must match exactly, including at least the same cv-qualification (const and volatile).
However, a more restrictive cv-qualification will succeed. If the type doesn't match and a variant pointer is passed to
get, the null pointer is returned. Otherwise, an exception of type bad_get is thrown.

const int& i=boost::get<const int>(my_first_variant);

Code that relies too heavily on get can quickly become fragile; if we don't know the type of the contained value, we
might be tempted to test for all possible combinations, like the following example does.

#include <iostream>

#include <string>

#include "boost/variant.hpp"

template <typename V> void print(V& v) {

  if (int* pi=boost::get<int>(&v))

    std::cout << "It's an int: " << *pi << '\n';

  else if (std::string* ps=boost::get<std::string>(&v))

    std::cout << "It's a std::string: " << *ps << '\n';

  else if (double* pd=boost::get<double>(&v))

    std::cout << "It's a double: " << *pd << '\n';

  std::cout << "My work here is done!\n";

}

int main() {

  boost::variant<int,std::string,double>

    my_first_variant("Hello there!");

  print(my_first_variant);

  my_first_variant=12;

  print(my_first_variant);

  my_first_variant=1.1;

  print(my_first_variant);

}

The function print does its job correctly now, but what if we decide to change the set of types for the variant? Then
we will have introduced a subtle bug that won't be caught at compile time; the function print will not print the value of
any other types than the ones we've originally anticipated. If we hadn't used a template function, but required an exact
signature of a variant, we would risk proliferation of overloads to accommodate the same functionality for different
types of variants. The next section discusses the concept of visiting variants, and the problem that (typesafe) visitation
solves.

 Visiting Variants

 Let's start with an example that explains why using get isn't as robust as one would like. Starting with the code from
the previous example, let's alter the types that the variant can contain, and call print with the char value for the variant,
too.

int main() {

  boost::variant<int,std::string,double,char>

    my_first_variant("Hello there!");

  print(my_first_variant);

  my_first_variant=12;

  print(my_first_variant);

  my_first_variant=1.1;

  print(my_first_variant);

  my_first_variant='a';

  print(my_first_variant);

}

This compiles cleanly even though we have added char to the set of types that the variant can contain and the last two
lines of the program set a char value and call print. (Note that print is parameterized on the variant type, so it adapts
to the new variant definition easily.) Here's the output of running the program:

It's a std::string: Hello there!

My work here is done!

It's an int: 12

My work here is done!

It's a double: 1.1

My work here is done!

My work here is done!

There's a problem showing in that output. Notice that there is no value reported before the final, "My work here is
done!" The reason is that as it stands, print doesn't output the value for any types other than those it was originally
designed for (std::string, int, and double), yet it compiles and runs cleanly. The value of the variant is simply ignored if
its current type isn't among those supported by print. There are more potential problems with using get, such as getting
the order of the if-statements right for class hierarchies. Note that this doesn't mean you should avoid using get
altogether; it just emphasizes that it's sometimes not the best solution. What would be better here is a mechanism that
somehow allows us to state which types of values are acceptable, and have that statement be validated at compile
time. This is exactly what the variant visitation mechanism does. By applying a visitor to a variant the compiler ensures
that they are fully compatible. Such visitors in Boost.Variant are function objects with function call operators that
accept arguments corresponding to the set of types that the variants they visit can contain. 

Rewriting the now infamous function print as a visitor looks like this:

class print_visitor : public boost::static_visitor<void> {

public:

  void operator()(int i) const {

    std::cout << "It's an int: " << i << '\n';

  }

  void operator()(std::string s) const {

    std::cout << "It's a std::string: " << s << '\n';

  }

  void operator()(double d) const {

    std::cout << "It's a double: " << d << '\n';

  }

};

To make print_visitor a visitor for variants, we have it inherit publicly from boost::static_visitor to get the correct
typedef (result_type), and to explicitly state that this class is a visitor type. The class implements three overloaded
versions of the function call operator, which accept an int, a std::string, and a double, respectively. To visit a variant,
one uses the function boost::apply_visitor(visitor, variant). If we replace the existing calls to print with calls to
apply_visitor, we end up with something like this:

int main() {

  boost::variant<int,std::string,double,char>

    my_first_variant("Hello there!");

  print_visitor v;

  boost::apply_visitor(v,my_first_variant);

  my_first_variant=12;

  boost::apply_visitor(v,my_first_variant);

  my_first_variant=1.1;

  boost::apply_visitor(v,my_first_variant);

  my_first_variant='a';

  boost::apply_visitor(v,my_first_variant);

}

Here, we create a print_visitor, named v, and apply it to my_first_ variant after putting each value in it. Because we
don't have a function call operator accepting char, this code fails to compile, right? Wrong! A char can be
unambiguously converted to an int, so the visitor is compatible with our variant type. This is what we get when running
the program.

It's a std::string: Hello there!

It's an int: 12

It's a double: 1.1

It's an int: 97

We learn two things from thisthe first is that the character a has the ASCII value 97, and the second, more important,
lesson is that if a visitor accepts its arguments by value, any implicit conversions will be applied to the values being
passed. If we want only the exact types to be compatible with the visitor (and also avoid copying the value from the
variant), we must change how the visitor function call operators accept their arguments. The following version of
print_visitor only works for the types int, std::string, and double; and any other types that provide an implicit
conversion to a reference of one of those types.

class print_visitor : public boost::static_visitor<void> {

public:

  void operator()(int& i) const {

    std::cout << "It's an int: " << i << '\n';

  }

  void operator()(std::string& s) const {

    std::cout << "It's a std::string: " << s << '\n';

  }

  void operator()(double& d) const {

    std::cout << "It's a double: " << d << '\n';

  }

};

If we compile the example again, the compiler will be really upset, saying something like this:

c:/boost_cvs/boost/boost/variant/variant.hpp:

In member function `typename Visitor::result_type boost::detail:: variant::

invoke_visitor<Visitor>::internal_visit(T&, int)

[with T = char, Visitor = print_visitor]':

[Snipped lines of irrelevant information here]

c:/boost_cvs/boost/boost/variant/variant.hpp:807:

error: no match for call to `(print_visitor) (char&)'

variant_sample1.cpp:40: error: candidates are:

  void print_visitor::operator()(int&) const

variant_sample1.cpp:44: error:

  void print_visitor::operator()(std::string&) const

variant_sample1.cpp:48: error:

  void print_visitor::operator()(double&) const

This error pinpoints the problem: There is no candidate function for char arguments! That's one important reason why
typesafe compile time visitation is such a powerful mechanism. It makes the visitation robust with regard to types, and
avoids the tedium of type-switching. Creating visitors is just as easy as creating other function objects, so the learning
curve here isn't very steep. When the set of types in the variants may change (they tend to do that!), creating visitor
classes is much more robust than relying solely on get. There is a higher initial cost, but it's typically worth it for
non-trivial uses.

 Generic Visitors

 By using the visitor mechanism and a parameterized function call operator, it's possible to create generic visitors that
are capable of accepting values of any type (that can syntactically and semantically handle whatever the generic
function call operator implementation requires). This is very useful for treating disparate types uniformly. Typical
examples of "universal" features are the C++ operators, such as arithmetic and IOStreams shift operators. The
following example uses operator<< to print the variant values to a stream.

#include <iostream>

#include <sstream>

#include <string>

#include <sstream>

#include "boost/variant.hpp"

class stream_output_visitor :

  public boost::static_visitor<void> {

  std::ostream& os_;

public:

  stream_output_visitor(std::ostream& os) : os_(os) {}

  template <typename T> void operator()(T& t) const {

    os_ << t << '\n';

  }

};

int main() {

  boost::variant<int,std::string> var;

  var=100;

  boost::apply_visitor(stream_output_visitor(std::cout),var);

  var="One hundred";

  boost::apply_visitor(stream_output_visitor(std::cout),var);

}

The idea is that the member function template for the function call operator in stream_output_visitor will be
instantiated once for each type visited (int and std::string, in this case). Because std::cout << 100 and std::cout <<
std::string("One hundred") are both well defined, the code compiles and works flawlessly.

 Of course, operators are just one example of what could be used in a generic visitor; they simply happen to apply to
a great many types. When calling functions on the values, or passing them as arguments to other functions, the
requirements are that the member function exists for all types being passed to the operator, and that there are suitable
overloads for the functions being called. Another interesting aspect of this parameterized function call operator is
specializing the behavior for some types, but still allowing a generic implementation to be available for the rest of the
types. In other words, you create overloaded function call operators for some types and rely on the member function
template for the rest. This is, in a sense, related to template specialization, where behavior is specialized based on type
information.

 Binary Visitors

 The visitors that we've seen so far have all been unarythat is, they accept one variant as their sole argument. Binary
visitors accept two (possibly different) variants. This concept is, among other things, useful for implementing relations
between variants. As an example, we shall create a lexicographic sort order for variant types. To do so, we'll use an
enormously useful component from the Standard Library: std::ostringstream. It will take anything OutputStreamable
and, on demand, produce a std::string out of it. We can thus lexically compare fundamentally different variant types,
assuming that all of the bound types support streaming. Just as with regular visitors, binary visitors should derive
publicly from boost::static_visitor, and the template parameter denotes the return type of the function call operator(s).
Because we are creating a predicate, the return type is bool. Here, then, is the binary predicate, which we shall put to
use shortly.

class lexicographical_visitor :

  public boost::static_visitor<bool> {

public:

  template <typename LHS,typename RHS>

    bool operator()(const LHS& lhs,const RHS& rhs) const {

      return get_string(lhs)<get_string(rhs);

    }

private:

  template <typename T> static std::string

    get_string(const T& t) {

    std::ostringstream s;

    s << t;

    return s.str();

  }

  static const std::string& get_string(const std::string& s) {

     return s;

  }

};

The function call operator is parameterized on both of its arguments, which means that it accepts any combination of
two types. The requirements for the set of possible types in the variants is that they be OutputStreamable. The
member function template get_string uses a std::ostringstream to convert its argument to its string representationhence
the OutputStreamable requirement. (To use std::ostringstream, remember to include the header <sstream>.) The
member function get_string simply accounts for the fact that a value of type std::string is already of the required type
and so it skips the trip through std::ostringstream and just returns its argument. After the two arguments have been
converted to std::string, all that remains is to compare them, which we do using operator<. Now let's put this visitor to
the test by sorting the elements of a container using its services (we'll also reuse the stream_output_visitor that we
created earlier in this chapter).

#include <iostream>

#include <string>

#include <vector>

#include <algorithm>

#include "boost/variant.hpp"

int main() {

  boost::variant<int,std::string> var1="100";

  boost::variant<double> var2=99.99;

  std::cout << "var1<var2: " <<

    boost::apply_visitor(

      lexicographical_visitor(),var1,var2) << '\n';

  typedef std::vector<

    boost::variant<int,std::string,double> > vec_type;

  vec_type vec;

  vec.push_back("Hello");

  vec.push_back(12);

  vec.push_back(1.12);

  vec.push_back("0");

  stream_output_visitor sv(std::cout);

  std::for_each(vec.begin(),vec.end(),sv);

  lexicographical_visitor lv;

  std::sort(vec.begin(),vec.end(),boost::apply_visitor(lv));

  std::cout << '\n';

  std::for_each(vec.begin(),vec.end(),sv);

};

First of all, we apply the visitor to two variants, var1 and var2, like so:

boost::apply_visitor(lexicographical_visitor(),var1,var2)

As you can see, the difference from the unary visitors is that two variants are passed to the function apply_visitor. A
more common example of usage is to use the predicate for sorting the elements, which we do like this:

lexicographical_visitor lv;

std::sort(vec.begin(),vec.end(),boost::apply_visitor(lv));

When the sort algorithm is invoked, it compares its elements using the predicate that we pass to it, which is an
instance of lexicographical_visitor. Note that boost::variant already defines operator<, so it's possible to simply sort
the container without our predicate.

std::sort(vec.begin(),vec.end());

But the default sort order, which first checks the current value index via which, arranges the elements in the order 12,
0, Hello, 1.12, and we wanted a lexicographical order. Because both operator< and operator== is provided for the
variant class, variants can be used as the element type of all Standard Library containers. When these default relations
aren't enough, implement the ones you need with binary visitors.

 There Is More to Know

 We haven't covered all of the functionality of the Boost.Variant library. The remaining advanced features are not
needed as often as those we have explored. However, I'll mention them briefly, so you will at least know what's
available should you find that you need them. The macro, BOOST_VARIANT_ENUM_PARAMS, is useful when
overloading/specializing functions and class templates for variant types. The macro helps by enumerating the set of
types that the variant can contain. There is support for creating variant types using type sequencesthat is, compile-time
lists that denote the set of types for the variant, through make_variant_over. Recursive variant types, which are useful
for creating expressions that are themselves variant types, are available using recursive_wrapper,
make_recursive_variant, and make_recursive_variant_over. If you need these additional features, the online
documentation does an excellent job of explaining them.





Variant Summary
 The fact that discriminated unions are useful in everyday programming should come as no surprise, and the
Boost.Variant library does an excellent job of providing efficient and easy-to-use variant types based upon
discriminated unions. Because C++ unions aren't terribly useful for many types (they support only built-in types and
POD types), the need for something else has been prevalent for a long time. Many attempts at creating discriminated
unions have suffered from significant drawbacks. For example, previous attempts usually come with a fixed set of
supported types, which seriously impedes maintainability and flexibility. Boost.Variant avoids this limitation through
templates, which theoretically allows creating any variant type. Type-switching code has always been a problem when
dealing with discriminated unions; it was necessary to test for the type of the current value before acting, creating
maintenance headaches. Boost.Variant offers straightforward value extraction and typesafe visitation, which is a novel
approach that elegantly solves that problem. Finally, efficiency has often been a concern with previous attempts, but
this library addresses that too, by using stack-based storage rather than the heap.

 Boost.Variant is a mature library, with a rich set of features that makes it easy and efficient to work with variant
types. It nicely complements the Boost.Any library, and it should definitely be part of your professional C++ toolbox.

 The authors of Boost.Variant are Eric Friedman and Itay Maman.
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How Does the Tuple Library Improve Your Programs?


 Multiple return values from functions


Grouping of related types


Ties values together

 C++, like many other programming languages, allows a function to return one value. However, that one value can be
of arbitrary type, which allows grouping multiple values as the result, with a struct or class. Although possible, it is
often inconvenient to group related return values in such constructs, because it means defining types for every distinct
return type needed. To avoid copying large objects in a return value, and to avoid creating a special type to return
multiple values from a function, we often resort to using non-const reference arguments or pointers, thereby allowing a
function to set the caller's variables through those arguments. This works well in many cases, but some find the output
parameters disconcerting in use. Also, output parameters don't emphasize that the return value is in fact return values.
Sometimes, std::pair is sufficient, but even that proves insufficient when returning more than two values.

 To provide for multiple return values, we need a tuple construct. A tuple is a fixed-size collection of values of
specified types. Examples include pairs, triples, quadruples, and so on. Some languages come with such tuple types
built in, but C++ doesn't. Given the power inherent in C++, this shortcoming can be amended by a library, which as
you no doubt guessed, is just what Boost.Tuple does.

 The Tuple library provides tuple constructs that are convenient to use for returning multiple values but also to group
any types and operate on them with generic code.



How Does the Tuple Library Fit with the Standard Library?
 The Standard Library provides a special case of tuple, a 2-tuple, called std::pair. This construct is used by Standard
Library containers, which you have probably noted when operating on elements of std::map. You can store pairs in
container classes, too. Of course, std::pair is not just a tool for container classes, it's useful on its own, and it comes
with the convenience function std::make_pair, which automates type deduction, plus a set of operators for comparing
pairs. A general solution for tuples, not just 2-tuples, is definitely even more useful. The offering from the Tuple library
is not fully general, but it allows tuples up to 10 elements. (If more are needed, which seems unlikely but certainly not
impossible, this limit can be extended.) What's more, these tuples are as efficient as a handcrafted solution using
structs!





Tuple

 Header: "boost/tuple/tuple.hpp"

 This includes the tuple class template and the core of the library.

Header: "boost/tuple/tuple_io.hpp"

includes input and output operations for tuples.

Header: "boost/tuple/tuple_comparison.hpp"

includes relational operators for tuples.

 The Tuple library resides in a nested namespace within boost called boost::tuples. To use tuples, include
"boost/tuple/tuple.hpp", which contains the core library. For input and output operations, include
"boost/tuple/tuple_io.hpp", and to include support for tuple comparisons, include "boost/tuple/tuple_comparison.hpp".
Some Boost libraries have a convenience header that includes all of the library; Boost.Tuple doesn't. The reason for
separating the library into different headers is to reduce compile times; if you won't be using relational operators, you
shouldn't need to pay for them in terms of time and dependencies. For convenience, some of the names from the
Tuple library are present in namespace boost: tuple, make_tuple, tie, and get. The following is a partial synopsis for
Boost.Tuple, showing and briefly discussing the most important functions.

namespace boost {

  template <class T1,class T2,...,class TM> class tuple {

  public:

    tuple();

    template <class P1,class P2...,class PM> 

      tuple(class P1,class P2,...,PN); 

    template <class U1,class U2,...,class UN>

    tuple(const tuple<U1,U2,...,UN>&);

    tuple& operator=(const tuple&);

  };

  template<class T1,class T2,...,class TN> tuple<V1,V2,...,VN> 

    make_tuple(const T1& t1,const T2& t2,...,const TN& tn);

  template<class T1,class T2,...,class TN> tuple<T1&,T2&,...,TN> 

    tie(T1& t1,T2& t2,...,TN& tn);

  template <int I,class T1,class T2,...,class TN> 

    RI get(tuple<T1,T2,...,TN>& t);

  template <int I,class T1,class T2,...,class TN> 

    PI get(const tuple<T1,T2,...,TN>& t);

  template <class T1,class T2,...,class TM,

           class U1,class U2,...,class UM>

    bool operator==(const tuple<T1,T2,...,TM>& t,

                    const tuple<U1,U2,...,UM>& u);

  template <class T1,class T2,...,class TM,

           class U1,class U2,...,class UM>

    bool operator!=(const tuple<T1,T2,...,TM>& t,

                   const tuple<U1,U2,...,UM>& u);

  template <class T1,class T2,...,class TN,

           class U1,class U2,...,class UN>

    bool operator<(const tuple<T1,T2,...,TN>&, 

                  const tuple<U1,U2,...,UN>&);

}

Members

tuple();

The default constructor of tuple initializes all elements, which implies that they must also be default constructiblethey
must have a public default constructor. Any exceptions from the constructors of the contained elements are
propagated.

template <class P1,class P2...,class PM> 

  tuple(class P1,class P2,...,PN); 

This constructor accepts arguments that are used to initialize the corresponding elements of the tuple. For some tuple
types, with non-default constructible types, this form of construction is a requirement; there's no way to
default-construct a tuple without also constructing its elements. For example, reference type elements must be
initialized at construction. Note that the number of arguments doesn't need to be the same as the number of elements
of the tuple type. It is possible to supply values for some of the elements, leaving the remaining elements to be default
initialized. Any exceptions from the elements' constructors are propagated.

template <class U1,class U2,...,class UN>

  tuple(const tuple<U1,U2,...,UN>&);

This constructor initializes the elements using the elements from another tuple, where each of the elements from the
other tuple (T1, T2,…,TM) must be constructible from (U1,U2,…,UN). Any exceptions from constructing the
elements are propagated.

TIndex & get<int Index>();

const TIndex & get<int Index>() const;

Returns a reference to the element at the indicated Index. Index must be a constant integral expression; a
compile-time error is produced if the index is greater than or equal to the number of elements in the tuple. The result
has the type given by the corresponding template argument, indicated above by TIndex.

tuple& operator=(const tuple& other);

Copy assignment of tuples requires that the two tuples have the same length and element types. Each element in *this
is assigned the corresponding element in other. Any exceptions from assigning the elements are propagated.

 Free Functions

template<class T1,class T2,...,class TN> tuple<V1,V2,...,VN> 

  make_tuple(const T1& t1,const T2& t2,...,const TN& tn);

The function template make_tuple is the tuple analogue of std::make_pair. It uses function template argument
deduction to determine the element types for a tuple containing the arguments. The top-level cv-qualifications of the
arguments are not used in creating the tuple element types. To control the type deduction for reference types, the
Boost.Ref utilities ref and cref can be used to wrap the arguments and thus affect the resulting type in the returned
tuple. (We'll see more about ref and cref shortly.) 

template<class T1,class T2,...,class TN> tuple<T1&,T2&,...,TN> 

  tie(T1& t1,T2& t2,...,TN& tn);

The function template tie is similar to make_tuple. The function call tie(t1,t2,...,tn) is equivalent to
make_tuple(ref(t1),ref(t2)... ref(tn))that is, it creates a tuple of references to the function arguments. The net effect is
that assigning a tuple to one created by tie copies the source tuple's elements to tie's arguments. Thus, tie makes it
easy to copy the values from a tuple returned from a function to existing variables. You can also assign to a 2-tuple
created by tie from a std::pair.

template <int I,class T1,class T2,...,class TN> 

  RI get(tuple<T1,T2,...,TN>& t);

This overload of the function get is used to retrieve one of the elements of the tuple t. Index I must be in the range
[0..N), where N is the number of elements in the tuple. If TI is a reference type, RI is TI; otherwise, RI is TI&.

template <int I,class T1,class T2,...,class TN> 

  PI get(const tuple<T1,T2,...,TN>& t);

This function get is used to retrieve one of the elements of the tuple t. Index I must be in the range [0..N), where N is
the number of elements in the tuple. If TI is a reference type, RI is TI; otherwise, RI is const TI&.

 Relational Operators

bool operator==(

  const tuple<T1,T2,...,TN>& lhs, 

  const tuple<U1,U2,...,UN>& rhs);

The equality operator returns true if get<i>(lhs)==get<i>(rhs) for all i in the range [0..N), where N is the number of
elements. The two tuples must have the same number of elements. Always returns true for empty tuples, where N=0.

bool operator!=(

  const tuple<T1,T2,...,TN>& lhs, 

  const tuple<U1,U2...,...,>& rhs);

The inequality operator returns true if get<i>(lhs)!=get<i>(rhs) for any i in the range [0..N), where N is the number of
elements. The two tuples must have the same number of elements. Always returns false for empty tuples, where N=0.

bool operator<(

  const tuple<T1,T2,...,TN>& lhs, 

  const tuple<U1,U2,...,UN>& rhs);

The less than operator returns true if get<i>(lhs)<get<i>(rhs) for any i in the range [0..N), where N is the number of
elements, assuming that for each such comparison returning false, the expression !(get<i>(rhs)<get<i>(lhs)) is true;
otherwise, it returns false. The two tuples must have the same number of elements. Always returns TRue for empty
tuplesthat is, where N=0.

 It's worth noting that for all of the supported relational operators (operators ==, !=, <, >, <=, and >=), the two
tuples must meet a couple of constraints. First, they both must be of the same length. Second, each element pair (first
with first, second with second, and so on) between the two tuples must support the same relational operator. When
these constraints are met, the tuple operator is implemented such that it compares each element pair, in turnthat is, the
operators are short-circuited, returning as soon as the answer is obvious. The <, >, <=, and >= operators perform
lexicographical comparisons, and expect the same of the element pair operators they invoke. Any exceptions emitted
by the element pair operators are propagated, but the tuple operators do not throw any exceptions of their own.







Usage
 Tuples live in namespace tuples, which in turn is inside namespace boost. Include "boost/tuple/tuple.hpp" to use the
library. The relational operators are defined in the header "boost/tuple/tuple_comparison.hpp". Input and output of
tuples are defined in "boost/tuple/tuple_io.hpp". A few of the key tuple components (tie and make_tuple) are also
available directly in namespace boost. In this section, we'll cover how tuples are used in some typical scenarios, and
how it is possible to extend the functionality of the library to best fit our purposes. We'll start with the construction of
tuples, and gradually move on to topics that include the details of how tuples can be utilized. 

Constructing Tuples

 The construction of a tuple involves declaring the types and, optionally, providing a list of initial values of compatible
types.[1]

[1] The constructor arguments do not have to be of the exact type specified for the elements when specializing the
tuple so long as they are implicitly convertible to those types.

boost::tuple<int,double,std::string> 

  triple(42,3.14,"My first tuple!");

The template parameters to the class template tuple specify the element types. The preceding example shows the
creation of a tuple with three types: an int, a double, and a std::string. Providing three parameters to the constructor
initializes the values of all three elements. It's also possible to pass fewer arguments than there are elements, which
results in the remaining elements being default initialized.

boost::tuple<short,int,long> another;

In this example, another has elements of types short, int, and long, and they are all initialized to 0.[2] Regardless of the
set of types for your tuples, this is how they are defined and constructed. So, if one of your tuple's element types is
not default constructible, you need to initialize it yourself. Compared to defining structs, tuples are much simpler to
declare, define, and use. There's also the convenience function, make_tuple, which makes creating tuples easier still. It
deduces the types, relieving you from the monotony (and chance of error!) of specifying them explicitly.

[2] Within the context of a template, T() for a built-in type means initialization with zero.

boost::tuples::tuple<int,double> get_values() {

  return boost::make_tuple(6,12.0);

}

The function make_tuple is analogous to std::make_pair. By default, make_tuple sets the types of the elements to
non-const, non-referencethat is, the plain, underlying types of the arguments. For example, consider the following
variables:

int plain=42;

int& ref=plain;

const int& cref=ref;

These three variables are named after their cv-qualification (constness) and whether they are references. The tuples
created by the following invocations of make_tuple all have one int element.

boost::make_tuple(plain);

boost::make_tuple(ref);

boost::make_tuple(cref);

This isn't always the right behavior, but on most occasions it is, which is the reason why it's the default. To make an
element of a tuple to be of reference type, use the function boost::ref, which is part of another Boost library called
Boost.Ref. The following three lines use the variables that we declared earlier, but this time the tuples have an int&
element, except for the last, which has a const int& element (we can't remove the constness of cref):

boost::make_tuple(boost::ref(plain));

boost::make_tuple(boost::ref(ref));

boost::make_tuple(boost::ref(cref));

If the elements should be const references, use boost::cref from Boost.Ref. Here, the three tuples have one const int&
element:

boost::make_tuple(boost::cref(plain));

boost::make_tuple(boost::cref(ref));

boost::make_tuple(boost::cref(cref));

It's probably obvious, but ref and cref have plenty of uses in other contexts too. In fact, they were created as a part of
the Boost.Tuple library, but were later moved to a separate library because of their general utility.

 Accessing tuple Elements

 The elements of a tuple are accessed either through the tuple member function get or the free function get. They both
require a constant integral expression designating the index of the element to retrieve.

#include <iostream>

#include <string>

#include "boost/tuple/tuple.hpp"

int main() {

  boost::tuple<int,double,std::string> 

  triple(42,3.14,"The amazing tuple!"); 

  int i=boost::tuples::get<0>(triple);

  double d=triple.get<1>();

  std::string s=boost::get<2>(triple);

}

In the example, a tuple with three elements with the innovative name triple was created. triple contained an int, a
double, and a string, which were retrieved through the get functions. 

int i=boost::tuples::get<0>(triple);

Here, you see the free function get at work. It takes a tuple as its one argument. Note that supplying an invalid index
causes an error at compilation time. The precondition is that the index be a valid index for the tuple type.

double d=triple.get<1>();

This code shows using the member function get. The preceding line could also have been written like this:

double& d=triple.get<1>();

The preceding binding to a reference works because get always returns a reference to the element. If the tuple, or the
type, is const, a const reference is returned. The two functions are equivalent, but on some compilers only the free
function works correctly. The free function has the advantage of providing a consistent extraction style for types other
than tuple. One advantage of accessing the elements of tuples by index rather than by name is that it enables generic
solutions, because there are no dependencies on a certain name, but only to an index. More on this later.

 Tuple Assignment and Copy Construction

 tuples can be assigned and copy constructed, providing that there are suitable conversions between the types of the
elements in the two tuples. To assign or copy tuples, member-wise assignment or copying is performed, so the two
tuples must have the same number of elements. The elements in the source tuple must be convertible to those of the
destination tuple. The following example shows how this works.

#include <iostream>

#include <string>

#include "boost/tuple/tuple.hpp"

class base {

public:

  virtual ~base() {};

  virtual void test() {

    std::cout << "base::test()\n";

  }

};

class derived : public base {

public:

  virtual void test() {

    std::cout << "derived::test()\n";

  }

};

int main() {

  boost::tuple<int,std::string,derived> tup1(-5,"Tuples");

  boost::tuple<unsigned int,std::string,base> tup2;

  tup2=tup1;

  tup2.get<2>().test();

  std::cout << "Interesting value: " 

            << tup2.get<0>() << '\n';

  const boost::tuple<double,std::string,base> tup3(tup2);

  tup3.get<0>()=3.14;

}

The example begins by defining two classes, base and derived, which are used as elements of two tuple types. The
first tuple contains three elements of types, int, std::string, and derived. The second tuple consists of three elements of
the compatible types unsigned int, std::string, and base. Consequently, the two tuples meet the requirements for
assignment, which is why tup2=tup1 is valid. In that assignment, the third element of tup1, which is of type derived, is
assigned to the third element of tup2, which is of type base. The assignment succeeds, but the derived object is sliced,
so this defeats polymorphism.

tup2.get<2>().test();

That line extracts a base&, but the object in tup2 is of type base, so it winds up calling base::test. We could have
made the behavior truly polymorphic by changing the tuples to contain references or pointers to base and derived,
respectively. Note that numeric conversion dangers (loss of precision, positive and negative overflow) apply when
converting between tuples as well. These dangerous conversions can be made safe with the help of the
Boost.Conversion library, covered in "Library 2: Conversion."

 The next line in the example copy-constructs a new tuple, tup3, with different, but still compatible types, from tup2.

const boost::tuple<double,std::string,base> tup3(tup2);

Note that tup3 is declared const. This implies that there is an error in the example. See if you can you spot it. I'll
wait…. Did you see it? Here it is:

tup3.get<0>()=3.14;

Because tup3 is const, get returns a const double&. This means that the assignment statement is ill-formed, and the
example doesn't compile. Assignment and copy construction between tuples are intuitive, because the semantics are
exactly the same for the tuples as for the individual elements. By way of example, let's see how to give polymorphic
behavior to the derived-to-base assignment between tuples.

derived d;

boost::tuple<int,std::string,derived*> 

  tup4(-5,"Tuples",&d);

boost::tuple<unsigned int,std::string,base*> tup5;

tup5=tup4;

tup5.get<2>()->test();

boost::tuple<int,std::string,derived&>

  tup6(12,"Example",d);  

boost::tuple<unsigned int,std::string,base&> tup7(tup6);

tup7.get<2>()->test();

In both cases, derived::test is called, which is exactly what we want. tup6 and tup7 are not assignable because you
can't assign to a reference, which is why tup7 is copy constructed from tup6 and tup6 is initialized with d. Because
tup4 and tup5 use pointers for their third element, they do support assignment. Note that typically smart pointers are
best in tuples (as opposed to raw pointers), because they alleviate the need to manage the lifetime of the resources to
which the pointers refer. However, as tup4 and tup5 show, pointers don't always refer to something requiring memory
management in the tuples. (Refer to "Library 1: Smart_ptr 1" for the details on the powerful smart pointers in Boost.)

 Comparing Tuples

 To compare tuples, you must include "boost/tuple/tuple_comparison.hpp". The relational tuple operators are
==,!=,<,>,<= and >=, and they invoke the same operator for each element pair, in order, in the tuples being
compared. These pair-wise comparisons short circuit, meaning that they only compare as many pairs as needed to
arrive at the correct result. Only tuples with the same number of elements can be compared and, as should be
obvious, the corresponding element types in the two tuples must be comparable. The test for equality returns TRue if
all of the element pairs of the two tuples are also equal. If any one equality comparison between element pairs returns
false, so does operator==. The inequality test is analogous, but returns the inverse result. The rest of the relational
operators perform lexicographical comparisons. 

Here's a sample program showing the comparison operators in action.

#include <iostream>

#include <string>

#include "boost/tuple/tuple.hpp"

#include "boost/tuple/tuple_comparison.hpp"

int main() {

  boost::tuple<int,std::string> tup1(11,"Match?");

  boost::tuple<short,std::string> tup2(12,"Match?");

  std::cout << std::boolalpha;

  std::cout << "Comparison: tup1 is less than tup2\n";

  std::cout << "tup1==tup2: " << (tup1==tup2) << '\n'; 

  std::cout << "tup1!=tup2: " << (tup1!=tup2) << '\n';

  std::cout << "tup1<tup2:  " << (tup1<tup2) << '\n';

  std::cout << "tup1>tup2:  " << (tup1>tup2) << '\n';

  std::cout << "tup1<=tup2: " << (tup1<=tup2) << '\n';

  std::cout << "tup1>=tup2: " << (tup1>=tup2) << '\n';

  tup2.get<0>()=boost::get<0>(tup1); //tup2=tup1 also works

  std::cout << "\nComparison: tup1 equals tup2\n";  

  std::cout << "tup1==tup2: " << (tup1==tup2) << '\n'; 

  std::cout << "tup1!=tup2: " << (tup1!=tup2) << '\n';

  std::cout << "tup1<tup2:  " << (tup1<tup2) << '\n';

  std::cout << "tup1>tup2:  " << (tup1>tup2) << '\n';

  std::cout << "tup1<=tup2: " << (tup1<=tup2) << '\n';

  std::cout << "tup1>=tup2: " << (tup1>=tup2) << '\n';

}

As you can see, the two tuples, tup1 and tup2, don't have exactly the same type, but the types are still comparable.
For the first set of comparisons, the tuples have different values for the first element, but for the second set, the tuples
are equal. This is the output from running the program.

Comparison: tup1 is less than tup2

tup1==tup2: false

tup1!=tup2: true

tup1<tup2:  true

tup1>tup2:  false

tup1<=tup2: true

tup1>=tup2: false

Comparison: tup1 equals tup2

tup1==tup2: true

tup1!=tup2: false

tup1<tup2:  false

tup1>tup2:  false

tup1<=tup2: true

tup1>=tup2: true

One important aspect of the support for comparisons is that tuples can be sorted, which means they can be stored in
associative containers. It is sometimes desirable to sort based on one of the elements of a tuple (creating a strict weak
ordering), which we can accomplish with a simple, generic solution.

template <int Index> class element_less {

public:

  template <typename Tuple> 

  bool operator()(const Tuple& lhs,const Tuple& rhs) const {

    return boost::get<Index>(lhs)<boost::get<Index>(rhs); 

  } 

};

This shows one of the advantages of accessing elements by index rather than by name; it is very easy to create generic
constructs that perform powerful operations. The sorting performed by our element_less can be used like this:

#include <iostream>

#include <vector>  

#include "boost/tuple/tuple.hpp"

#include "boost/tuple/tuple_comparison.hpp"

template <int Index> class element_less {

public:

  template <typename Tuple> 

  bool operator()(const Tuple& lhs,const Tuple& rhs) const {

    return boost::get<Index>(lhs)<boost::get<Index>(rhs); 

  } 

};

int main() {

  typedef boost::tuple<short,int,long,float,double,long double> 

    num_tuple;

  std::vector<num_tuple> vec;

  vec.push_back(num_tuple(6,2));

  vec.push_back(num_tuple(7,1));

  vec.push_back(num_tuple(5));

  std::sort(vec.begin(),vec.end(),element_less<1>());

  std::cout << "After sorting: " << 

    vec[0].get<0>() << '\n' <<

    vec[1].get<0>() << '\n' <<

    vec[2].get<0>() << '\n';

}

vec is populated with three elements. The sorting is performed on the second element of the tuples using the
element_less<1> function object from the template that we created earlier. There are more applications for this kind
of function object, such as when searching for certain tuple elements.

 Tying Tuple Elements to Variables

 A handy feature of the Boost.Tuple library is "tying" tuples to variables. Tiers are tuples created by the overloaded
function template boost::tie, such that all of the elements are non-const reference types. As a result, ties must be
initialized with lvalues, and thus tie's arguments are non-const reference types, too. Because the resulting tuples have
non-const reference elements, any assignment to the elements of such a tuple are assignments through non-const
references to the lvalues with which tie was called. This ties existing variables to a tuple, hence the name! 

The following example first shows the obvious way of getting values out of a returned tuple. Then, it shows the same
operation using a tied tuple to assign values directly to variables. To make the example more interesting, we'll begin by
defining a function that returns the greatest common divisor and the least common multiple of two values. The values
are, of course, grouped together as a tuple return type. You'll notice that the functions for calculating the greatest
common divisor and least common multiple come from another Boost libraryBoost.Math.

#include <iostream>

#include "boost/tuple/tuple.hpp"

#include "boost/math/common_factor.hpp"

boost::tuple<int,int> gcd_lcm(int val1,int val2) {

  return boost::make_tuple(

    boost::math::gcd(val1,val2),

    boost::math::lcm(val1,val2));

}

int main() {

  //The "old" way

  boost::tuple<int,int> tup;

  tup=gcd_lcm(12,18);

  int gcd=tup.get<0>());

  int lcm=tup.get<1>());

  std::cout << "Greatest common divisor: " << gcd << '\n';

  std::cout << "Least common multiple:   " << lcm << '\n';

  //The "new" way

  boost::tie(gcd,lcm)=gcd_lcm(15,20);

  std::cout << "Greatest common divisor: " << gcd << '\n';

  std::cout << "Least common multiple:   " << lcm << '\n';

}

In some cases, we may not be interested in all of the elements of the returned tuple, and this too is supported by tie.
There is a special objectboost:: tuples::ignorethat discards a tuple element's value. If in the preceding example we
were only interested in the greatest common divisor, we could have expressed it as follows:

boost::tie(gcd,boost::tuples::ignore)=gcd_lcm(15,20);

The alternative is to create a variable, pass it to tie, and then ignore it in the rest of the current scope. That leaves
maintainers to question the variable's existence. Using ignore clearly proclaims that the code doesn't use that value
from the tuple.

 Note that tie also supports std::pair. The usage is just like tying values from boost::tuples.

std::pair<short,double> p(3,0.141592);

short s;

double d;

boost::tie(s,d)=p;

Tying tuples is more than a mere convenience; it helps make the code clearer.

 Streaming Tuples

 Each of the examples in this chapter extracted the elements of tuples just to be able to stream them to std::cout. This
works, but there's actually an easier way. The tuple library supports both input and output streaming; operator>> and
operator<< are overloaded for tuples. There are also manipulators to change the default delimiters used for input and
output streaming. Changing the delimiters for input changes what operator>> looks for to recognize element values.
Let's examine these things in a simple program that reads and writes tuples. Note that to use tuple streaming, you need
to include the header "boost/tuple/tuple_io.hpp".

#include <iostream>

#include "boost/tuple/tuple.hpp"

#include "boost/tuple/tuple_io.hpp"

int main() {

  boost::tuple<int,double> tup1;

  boost::tuple<long,long,long> tup2;

  std::cout << "Enter an int and a double as (1 2.3):\n";

  std::cin >> tup1;

  std::cout << "Enter three ints as |1.2.3|:\n";

  std::cin >> boost::tuples::set_open('|') >>

    boost::tuples::set_close('|') >>

    boost::tuples::set_delimiter('.') >> tup2;

  std::cout << "Here they are:\n"

           << tup1 << '\n'

           << boost::tuples::set_open('\"') <<

    boost::tuples::set_close('\"') <<

    boost::tuples::set_delimiter('-');

  std::cout << tup2 << '\n';

}

The previous example shows how to use the streaming operators together with tuples. The default delimiters for tuples
are ( (left parenthesis) as opening delimiter, ) (right parenthesis) for the closing delimiter, and a space for delimiting
tuple element values. This implies that to get our program working correctly, we need to give the program input
like(12 54.1) and |4.5.3|. Here's a sample run.

Enter an int and a double as (1 2.3):

(12 54.1)

Enter three ints as |1.2.3|:

|4.5.3|

Here they are:

(12 54.1)

"4-5-3"

The support for streaming is convenient and, with the support of the delimiter manipulators, it's easy to make
streaming compatible even with legacy code that has been updated to use tuples.

 Finding Out More About Tuples

 There are more facilities for tuples than those we've already seen. These more advanced features are vital for creating
generic constructs that work with tuples. For example, you can get the length of a tuple (the number of elements),
retrieve the type of an element, and use the null_type tuple sentinel to terminate recursive template instantiations.

 It's not possible to iterate over the elements of a tuple with a for loop, because get requires a constant integral
expression. However, using a template metaprogram, we can print all the elements of a tuple.

#include <iostream>

#include <string>

#include "boost/tuple/tuple.hpp"

template <typename Tuple,int Index> struct print_helper {

  static void print(const Tuple& t) {

    std::cout << boost::tuples::get<Index>(t) << '\n';

    print_helper<Tuple,Index-1>::print(t);

  }

};

template<typename Tuple> struct print_helper<Tuple,0> {

  static void print(const Tuple& t) {

    std::cout << boost::tuples::get<0>(t) << '\n';

  }

};

template <typename Tuple> void print_all(const Tuple& t) {

  print_helper<

    Tuple,boost::tuples::length<Tuple>::value-1>::print(t);

}

int main() {

  boost::tuple<int,std::string,double> 

    tup(42,"A four and a two",42.424242);

  print_all(tup);

}

In the example, a helper class template, print_helper, is a metaprogram that visits all indices of a tuple, printing the
element for each index. The partial specialization terminates the template recursion. The function print_all supplies the
length of its tuple parameter, plus the tuple to a print_helper constructor. The length of the tuple is retrieved like this:

boost::tuples::length<Tuple>::value

This is a constant integral expression, which means it can be passed as the second template argument for print_helper.
However, there's a caveat to our solution, which becomes clear when we see the output from running the program.

42.4242

A four and a two

42

We're printing the elements in reverse order! Although this could be considered a feature in some situations (he says
slyly), it's certainly not the intention here. The problem is that print_helper prints the value of the
boost::tuples::length<Tuple>::value-1 element first, then the value of the previous element, and so on, until the
specialization prints the first element's value. Rather than using the first element as the special case and starting with the
last element, we need to start with the first element and use the last element as the special case. How is that possible?
The solution becomes apparent after you know that tuples are terminated with a special type, boost::tuples:: null_type.
We can always be certain that the last type in a tuple is null_type, which also means that our solution involves a
specialization or function overload for null_type.

 The remaining issue is getting the first element's value followed by the next, and so on, and then stopping at the end of
the list. tuples provide the member functions get_head and get_tail to access the elements in them. As its name
suggests, get_head returns the head of the sequence of valuesthat is, the first element's value. get_tail returns a tuple
with all but the first value in the tuple. That leads to the following solution for print_all.

void print_all(const boost::tuples::null_type&) {}

template <typename Tuple> void print_all(const Tuple& t) {

  std::cout << t.get_head() << '\n';

  print_all(t.get_tail());

}

This solution is shorter than the original, and it prints the element values in the correct order. Each time the function
template print_all executes, it prints one element from the beginning of the tuple and then recurses with a tuple of all
but the first value in t. When there are no more values in the tuple, the tail is of type null_type, the overloaded function
print_all is called, and the recursion terminates.

 It can be useful to know the type of a particular element such as when declaring variables in generic code that are
initialized from tuple elements. Consider a function that returns the sum of the first two elements of a tuple, with the
additional requirement that the return type must correspond to the largest type (for example, with regards to range of
integral types) of the two. Without somehow knowing the types of the elements, it would be impossible to create a
general solution to this. This is what the helper template element<N,Tuple>::type does, as the following example
shows. The problem we're facing not only involves calculating which element has the largest type, but declaring that
type as the return value of a function. This is somewhat complicated, but we can solve it using an extra level of
indirection. This indirection comes in the form of an additional helper template with one responsibility: to provide a
typedef that defines the larger of two types. The code may seem a little hairy, but it does the job.

#include <iostream>

#include "boost/tuple/tuple.hpp"

#include <cassert>

template <bool B,typename Tuple> struct largest_type_helper {

  typedef typename boost::tuples::element<1,Tuple>::type type;

};

template<typename Tuple> struct largest_type_helper<true,Tuple> {

  typedef typename boost::tuples::element<0,Tuple>::type type;

};

template<typename Tuple> struct largest_type {

  typedef typename largest_type_helper<

    (sizeof(boost::tuples::element<0,Tuple>)>

     sizeof(boost::tuples::element<1,Tuple>)),Tuple>::type type;  

};

template <typename Tuple> 

  typename largest_type<Tuple>::type sum(const Tuple& t) {

    typename largest_type<Tuple>::type

      result=boost::tuples::get<0>(t)+

      boost::tuples::get<1>(t);

  return result;

}

int main() {

  typedef boost::tuple<short,int,long> my_tuple;

  boost::tuples::element<0,my_tuple>::type first=14;

  assert(type_id(first) == typeid(short));

  boost::tuples::element<1,my_tuple>::type second=27;

  assert(type_id(second) == typeid(int));

  boost::tuples::element<

    boost::tuples::length<my_tuple>::value-1,my_tuple>::type 

      last;

  my_tuple t(first,second,last);

  std::cout << "Type is int? " <<  

   (typeid(int)==typeid(largest_type<my_tuple>::type)) << '\n';

  int s=sum(t);

}

If you didn't quite follow the exercise in template metaprogramming, don't worryit's absolutely not a requirement for
utilizing the Tuple library. Although this type of coding takes some time getting used to, the idea is really quite simple.
largest_type gets the typedef from one of the two helper class templates, largest_type_helper, where one version is
partially specialized on the Boolean parameter. This parameter is determined by comparing the size of the two first
elements of the tuple (the second template parameter). The result of this is a typedef that represents the larger of the
two types. Our function sum uses that type as the return value, and the rest is simply a matter of adding the two
elements. 

The rest of the example shows how to use the function sum, and also how to declare variables with types from certain
tuple elements. The first two use a hardcoded index into the tuple.

boost::tuples::element<0,my_tuple>::type first=14;

boost::tuples::element<1,my_tuple>::type second=27;

The last declaration retrieves the index of the last element of the tuple, and uses that as input to the element helper to
(generically) declare the type.

boost::tuples::element<

boost::tuples::length<my_tuple>::value-1,my_tuple>::type last;

Tuples and for_each

 The method that we used to create the print_all function can be extended to create a more general mechanism like
std::for_each. For example, what if we didn't want to print the elements, but rather wanted to sum them or copy them,
or what if we wanted to print only some of them? Sequential access to the tuple elements isn't straightforward, as we
discovered when we developed the preceding examples. It makes sense to create a general solution that accepts a
function or function object argument to invoke on the tuple elements. This enables not only the (rather limited) print_all
function's behavior, but also that of any function that can accept the types of elements from a tuple. The following
example creates a function template called for_each_element to do just that. For the sake of argument, the example
shows two function objects to show the workings of for_each_element. 

#include <iostream>

#include <string>

#include <functional>

#include "boost/tuple/tuple.hpp"

template <typename Function> void for_each_element(

  const boost::tuples::null_type&, Function) {}

template <typename Tuple, typename Function> void     

  for_each_element(Tuple& t, Function func) {

    func(t.get_head());

    for_each_element(t.get_tail(),func);

}

struct print {

  template <typename T> void operator()(const T& t) {

    std::cout << t << '\n';

  }

};

template <typename T> struct print_type {

  void operator()(const T& t) {

    std::cout << t << '\n';

  }

  template <typename U> void operator()(const U& u) {}

};

int main() {

  typedef boost::tuple<short,int,long> my_tuple;

  boost::tuple<int,short,double> nums(1,2,3.01);

  for_each_element(nums, print());

  for_each_element(nums, print_type<double>());

}

The function for_each_element reuses the strategy from earlier examples, by overloading the function with a version
that accepts an argument of type null_type that signals the end of the tuple's elements, to do nothing. Let's look at the
function where the work is done.

template <typename Tuple, typename Function> void     

  for_each_element(Tuple& t, Function func) {

    func(t.get_head());

    for_each_element(t.get_tail(),func);

}

The second template and function parameter specifies the function (or function object) to call with the tuple elements
as argument. for_each_element first invokes the function (object) with the element returned from get_head. One way
to think of it is that get_head returns the current element of the tuple. Then, it recursively calls itself with the tail or
remaining elements of the tuple. The next call extracts the head element and calls the function (object) with it and
recurses again, and so on. Eventually, get_tail finds no more elements and returns an instance of null_type, which ends
the recursion by matching the non-recursive for_each_element overload. That's all there is to for_each_element!

 Next, the example illustrates two function objects that contain nice techniques for reuse in other contexts. One is the
print function object.

struct print {

  template <typename T> void operator()(const T& t) {

    std::cout << t << '\n';

  }

};

There is nothing fancy about this print function object, but as it turns out, many programmers are unaware of the fact
that the function call operator can be templated! Typically, function objects are parameterized on one or more types
that they should work with, but that doesn't work for tuples because the elements are typically of different types.
Thus, the parameterization is not on the function object itself, but on the function call operator, with the added benefit
that using it is much simpler, as shown here.

for_each_element(nums, print());

There's no need to specify the type, which would have been required with a parameterized function object. Pushing
the template parameters onto the member functions of a class is sometimes useful and often user-friendly.

 The second function object prints all elements of a certain type. This kind of filtering can be used to extract elements
of compatible types, too.

template <typename T> struct print_type {

  void operator()(const T& t) {

    std::cout << t << '\n';

  }

  template <typename U> void operator()(const U& u) {}

};

This function object displays another useful technique, which I refer to as the discarding overload. It's used to ignore
the elements passed to it except those of type T untouched. The trick involves an overload with a better match for all
but a certain type. That bell you hear ringing is probably from the close connection this technique has with the sizeof
trick and the ellipsis (...) construct, which is used to make decisions at compile time, but that doesn't work here,
where the function is actually called but doesn't do anything. The function object is used like this:

for_each_element(print_type<double>(),nums);

Easy to use, easy to write, and it adds value. That's probably not as much a property of the function object as it is of
the Tuple library that enables the use of these and other idioms.





Tuple Summary
 The Tuple library brings the concept of tuples to C++. It is intuitive and concise, and although its primary use seems
to be for multiple return value from functions, it is also very useful for creating all sorts of logical groupings such as
storing sets of elements (as elements) in Standard Library containers. The alternative for achieving the same level of
coherency is to create unique structs for every different return type (groupings), which is not only tedious work, it also
removes the possibility of generic solutions for recurring tasks. These problems are alleviated with the use of the
Boost.Tuple.

 In this chapter, we've seen how to use the Tuple library and how to extend it in the form of function objects and
algorithms that can work with any tuple. Accessing elements by index, and the get_head/get_tail member functions,
provides consistency in working with tuples that enables many solutions that are impossible with other forms of
user-defined types (UDTs).

 The creator of Boost.Tuple, Jaakko Järvi, deserves credit for this great library. This creation goes a long way to
prove that nearly anything lacking in C++ can be added through libraries by talented designers.



Part III: Function Objects and
Higher-Order Programming
 The following four libraries have the potential of changing the way you look at programming in C++ forever. Although
function objects are not a novel concept, especially for people who have long been using and customizing the
algorithms in the Standard Library, the libraries covered in this part of the book take function objects to a whole new
level of abstraction. There are areas in C++ that are sometimes considered to be shortcomings when employing
certain designs, such as the seemingly unavoidable proliferation of small function objects when using Standard Library
algorithms. One must never forget that in C++, it's best to not be (too) judgmental of the language itself, for it was
designed to handle its own shortcomings through libraries; and that's exactly what the libraries Boost.Bind and
Boost.Lambda try to do for the aforementioned problem. Callback functions are another problematic area that is
addressed here; the root of the problem is accentuated by using libraries for higher-order programming, because
storing and invoking delayed function-like objects becomes an important feature. That's what Boost.Function does,
and of course, it plays very nicely with the other two libraries mentioned here (and others, too). The final chapter
discusses Boost.Signals, a library that reifies the Observer pattern. There is fantastic power in these librariesenabling
programmers to write less code, more expressive statements, and really compact expressions that make code easier
to read and maintain. With this power comes responsibility, because it's also quite possible to write virtually
unparseable expressions. For many programmers, the acquaintance with these libraries has been an epiphanyI hope
that it will be for you too.



Library 9. Bind
 How Does the Bind Library Improve Your Programs?
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How Does the Bind Library Improve Your Programs?


 Adapts functions and function objects for use with Standard Library algorithms


Consistent syntax for creating binders


Powerful functional composition

 When using the algorithms from the Standard Library, you often need to supply them with a function or a function
object. This is an excellent way of customizing the behavior of algorithms, but you often end up writing new function
objects because you don't have the tools necessary for functional composition and adaptation of argument order or
arity. Although the Standard Library does offer some productive tools, such as bind1st and bind2nd, this is rarely
enough. Even when the functionality suffices, that often implies suffering from awkward syntax that obfuscates the
code for programmers who are not familiar with those tools. What you need, then, is a solution that both adds
functionality and normalizes the syntax for creating function objects on-the-fly, and this is what Boost.Bind does.

 In effect, a generalized binder is a sort of lambda expression, because through functional composition we can more or
less construct local, unnamed functions at the call site. There are many cases where this is desirable, because it serves
three purposesreducing the amount of code, making the code easier to understand, and localizing behavior, which in
turn implies more effective maintenance. Note that there is another Boost library, Boost.Lambda, which takes these
properties even further. Boost.Lambda is covered in the next chapter. Why shouldn't you just skip ahead to that
library? Because most of the time, Boost.Bind does everything you need when it comes to binding, and the learning
curve isn't as steep.

 One of the keys to the success of Bind is the uniform syntax for creating function objects and the few requirements on
types that are to be used with the library. The design takes focus away from how to write the code that works with
your types, and sets it to where we are all most interestedhow the code works and what it actually does. When using
adaptors from the Standard Library, such as ptr_fun and mem_fun_ref, code quickly becomes unnecessarily verbose
because we have to provide these adaptors in order for the arguments to adhere to the requirements of the algorithms.
This is not the case with Boost.Bind, which uses a much more sophisticated deduction system, and a straightforward
syntax when the automatic deduction cannot be applied. The net effect of using Bind is that you'll write less code that
is easier to understand.



How Does Bind Fit with the Standard Library?
 Conceptually, Bind is a generalization of the existing Standard Library functions bind1st and bind2nd, with additional
functionality that allows for more sophisticated functional composition. It also alleviates the need to use adaptors for
pointers to functions and pointers to class members, which saves coding and potential errors. Boost.Bind also covers
some of the popular extensions to the C++ Standard Library, such as the SGI extensions compose1 and compose2,
and also the select1st and select2nd functions. So, Bind does fit with the Standard Library, and it does so very well
indeed. The need for such functionality is acknowledged, and at last in part addressed by the Standard Library, and
also in popular extensions to the STL. Boost.Bind has been accepted for the upcoming Library Technical Report.



Bind

 Header: "boost/bind.hpp"

 The Bind library creates function objects that bind to a function (free function or member function). Rather than
supplying all of the arguments to the function directly, arguments can be delayed, meaning that a binder can be used to
create a function object with changed arity (number of arguments) for the function it binds to, or to reorder the
arguments any way you like.

 The return types of the overloaded versions of the function bind are unspecifiedthat is, there is no guarantee for what
the signature of a returned function object is. Sometimes, you need to store that object somewhere, rather than just
passing it directly to another functionwhen this need arises, you want to use Boost.Function, which is covered in "
Library 11: Function 11." The key to understanding what the bind-functions return is to grok the transformation that is
taking place. Using one of the overloaded bind functionstemplate<class R, class F> unspecified-1 bind(F f)as an
example, this would be (quoting from the online documentation), "A function object  such that the expression (v1,
v2, ..., vm) is equivalent to f(), implicitly converted to R." Thus, the function that is bound is stored inside the binder,
and the result of subsequent invocations on that function object yields the return value from the function (if any)that is,
the template parameter R. The implementation that we're covering here supports up to nine function arguments.

 The implementation of Bind involves a number of functions and classes, but as users, we do not directly use anything
other than the overloaded function bind. All binding takes place through the bind function, and we can never depend
on the type of the return value. When using bind, the placeholders for arguments (called _1, _2, and so on) do not
need to be introduced with a using declaration or directive, because they reside in an unnamed namespace. Thus,
there is rarely a reason for writing one of the following lines when using Boost.Bind.

using boost::bind;

using namespace boost;

As was mentioned before, the current implementation of Boost.Bind supports nine placeholders (_1, _2, _3, and so
forth), and therefore also up to nine arguments. It's instructive to at least browse through the synopsis for a high-level
understanding of how the type deduction is performed, and when/why this does not always work. Parsing the
signatures for member function pointers and free functions takes a while for the eye to get used to, but it's useful.
You'll see that there are overloads for both free functions and class member functions. Also, there are overloads for
each distinct number of arguments. Rather than listing the synopsis here, I encourage you to visit Boost.Bind's
documentation at www.boost.org.

http://www.boost.org




Usage
 Boost.Bind offers a consistent syntax for both functions and function objects, and even for value semantics and
pointer semantics. We'll start with some simple examples to get to grips with the usage of vanilla bindings, and then
move on to functional composition through nested binds. One of the keys to understanding how to use bind is the
concept of placeholders. Placeholders denote the arguments that are to be supplied to the resulting function object,
and Boost.Bind supports up to nine such arguments. The placeholders are called _1, _2, _3, _4, and so on up to _9,
and you use them in the places where you would ordinarily add the argument. As a first example, we shall define a
function, nine_arguments, which is then called using a bind expression.

#include <iostream>

#include "boost/bind.hpp"

void nine_arguments(

  int i1,int i2,int i3,int i4,

    int i5,int i6,int i7,int i8, int i9) {

    std::cout << i1 << i2 << i3 << i4 << i5

      << i6 << i7 << i8 << i9 << '\n';

}

int main() {

  int i1=1,i2=2,i3=3,i4=4,i5=5,i6=6,i7=7,i8=8,i9=9;

  (boost::bind(&nine_arguments,_9,_2,_1,_6,_3,_8,_4,_5,_7))

    (i1,i2,i3,i4,i5,i6,i7,i8,i9);

}

In this example, you create an unnamed temporary binder and immediately invoke it by passing arguments to its
function call operator. As you can see, the order of the placeholders is scrambledthis illustrates the reordering of
arguments. Note also that placeholders can be used more than once in an expression. The output of this program is as
follows.

921638457

This shows that the placeholders correspond to the argument with the placeholder's numberthat is, _1 is substituted
with the first argument, _2 with the second argument, and so on. Next, you'll see how to call member functions of a
class.

 Calling a Member Function

 Let's take a look at calling member functions using bind. We'll start by doing something that also can be done with the
Standard Library, in order to compare and contrast that solution with the one using Boost.Bind. When storing
elements of some class type in Standard Library containers, a common need is to call a member function on some or
all of these elements. This can be done in a loop, and is all-too-often implemented thusly, but there are better
solutions. Consider the following simple class, status, which we'll use to show that the ease of use and power of
Boost.Bind is indeed tremendous.

class status {

  std::string name_;

  bool ok_;

public:

  status(const std::string& name):name_(name),ok_(true) {}

  void break_it() {

    ok_=false;

  }

  bool is_broken() const {

    return ok_;

  }

  void report() const {

    std::cout << name_ << " is " <<

      (ok_ ? "working nominally":"terribly broken") << '\n';

  }

};

If we store instances of this class in a vector, and we need to call the member function report, we might be tempted to
do it as follows.

std::vector<status> statuses;

statuses.push_back(status("status 1"));

statuses.push_back(status("status 2"));

statuses.push_back(status("status 3"));

statuses.push_back(status("status 4"));

statuses[1].break_it();

statuses[2].break_it();

for (std::vector<status>::iterator it=statuses.begin();

       it!=statuses.end();++it) {

  it->report();

}

This loop does the job correctly, but it's verbose, inefficient (due to the multiple calls to statuses.end()), and not as
clear as using the algorithm from the Standard Library that exists for exactly this purpose, for_each. To use for_each
to replace the loop, we need to use an adaptor for calling the member function report on the vector elements. In this
case, because the elements are stored by value, what we need is the adaptor mem_fun_ref.

std::for_each(

 statuses.begin(),

 statuses.end(),

 std::mem_fun_ref(&status::report));

This is a correct and sound way to do itit is quite terse, and there can be no doubt as to what the code is doing. The
equivalent code for doing this using Boost.Bind follows.[1]

[1] It should be noted that boost::mem_fn, which has also been accepted for the Library Technical Report, would
work just as well for the cases where there are no arguments. mem_fn supersedes std::mem_fun and
std::mem_fun_ref.

std::for_each(

  statuses.begin(),

  statuses.end(),

  boost::bind(&status::report,_1));

This version is equally clear and understandable. This is the first real use of the aforementioned placeholders of the
Bind library, and what we're telling both the compiler and the reader of our code is that _1 is to be substituted for an
actual argument by the function invoking the binder. Although this code does save a few characters when typing, there
is no big difference between the Standard Library mem_fun_ref and bind for this particular case, but let's reuse this
example and change the container to hold pointers instead.

std::vector<status*> p_statuses;

p_statuses.push_back(new status("status 1"));

p_statuses.push_back(new status("status 2"));

p_statuses.push_back(new status("status 3"));

p_statuses.push_back(new status("status 4"));

p_statuses[1]->break_it();

p_statuses[2]->break_it();

We can still use both the Standard Library, but we can no longer use mem_fun_ref. We need help from the adaptor
mem_fun, which is considered a bit of a misnomer, but again does the job that needs to be done.

std::for_each(

  p_statuses.begin(),

  p_statuses.end(),

  std::mem_fun(&status::report));

Although this works too, the syntax has changed, even though we are trying to do something very similar. It would be
nice if the syntax was identical to the first example, so that the focus is on what the code really does rather than how it
does it. Using bind, we do not need to be explicit about the fact that we are dealing with elements that are pointers
(this is already encoded in the type of the container, and redundant information of this kind is typically unnecessary for
modern libraries).

std::for_each(

  p_statuses.begin(),

  p_statuses.end(),

  boost::bind(&status::report,_1));

As you can see, this is exactly what we did in the previous example, which means that if we understood bind then, we
should understand it now, too. Now that we have decided to switch to using pointers, we are faced with another
problem, namely that of lifetime control. We must manually deallocate the elements of p_statuses, and that is both
error prone and unnecessary. So, we may decide to start using smart pointers, and (again) change our code.

std::vector<boost::shared_ptr<status> > s_statuses;

s_statuses.push_back(

  boost::shared_ptr<status>(new status("status 1")));

s_statuses.push_back(

  boost::shared_ptr<status>(new status("status 2")));

s_statuses.push_back(

  boost::shared_ptr<status>(new status("status 3")));

s_statuses.push_back(

  boost::shared_ptr<status>(new status("status 4")));

s_statuses[1]->break_it();

s_statuses[2]->break_it();

Now, which adaptor from the Standard Library do we use? mem_fun and mem_fun_ref do not apply, because the
smart pointer doesn't have a member function called report, and thus the following code fails to compile.

std::for_each(

  s_statuses.begin(),

  s_statuses.end(),

  std::mem_fun(&status::report));

The fact of the matter is that we lucked outthe Standard Library cannot help us with this task.[2] Thus, we have to
resort to the same type of loop that we wanted to get rid ofor use Boost.Bind, which doesn't complain at all, but
delivers exactly what we want.

[2] It will do so in the future, because both mem_fn and bind will be part of the future Standard Library.

std::for_each(

  s_statuses.begin(),

  s_statuses.end(),

  boost::bind(&status::report,_1));

Again, this example code is identical to the example before (apart from the different name of the container). The same
syntax is used for binding, regardless of whether value semantics or pointer semantics apply, and even when using
smart pointers. Sometimes, having a different syntax helps the understanding of the code, but in this case, it doesn'tthe
task at hand is to call a member function on elements of a container, nothing more and nothing less. The value of a
consistent syntax should not be underestimated, because it helps both the person who is writing the code and all who
later need to maintain the code (of course, we don't write code that actually needs maintenance, but for the sake of
argument, let's pretend that we do).

 These examples have demonstrated a very basic and common use case where Boost.Bind excels. Even though the
Standard Library does offer some basic tools that do the same thing, we have seen that Bind offers both the
consistency of syntax and additional functionality that the Standard Library currently lacks.

 A Look Behind the Curtain

 After you start using Boost.Bind, it is inevitable; you will start to wonder how it actually works. It seems as magic
when bind deduces the types of the arguments and return type, and what's the deal with the placeholders, anyway?
We'll have a quick look on some of the mechanisms that drives such a beast. It helps to know a little about how bind
works, especially when trying to decipher the wonderfully succinct and direct error messages the compiler emits at the
slightest mistake. We will create a very simple binder that, at least in part, mimics the syntax of Boost.Bind. To avoid
stretching this digression over several pages, we shall only support one type of binding, and that is for a member
function taking a single argument. Moreover, we won't even get bogged down with the details of how to handle
cv-qualification and its ilk; we'll just keep it simple.

 First of all, we need to be able to deduce the return type, the class type, and the argument type for the function that
we are to bind. We do this with a function template.

template <typename R, typename T, typename Arg>

  simple_bind_t<R,T,Arg> simple_bind(

    R (T::*fn)(Arg),

    const T& t,

    const placeholder&) {

      return simple_bind_t<R,T,Arg>(fn,t);

}

The preceding might seem a little intimidating at first, and by all rights it is because we have yet to define part of the
machinery. However, the part to focus on here is where the type deduction takes place. You'll note that there are
three template parameters to the function, R, T, and Arg. R is the return type, T is the class type, and Arg is the type
of the (single) argument. These template parameters are what makes up the first argument to our functionthat is, R
(T::*f)(Arg). Thus, passing a member function with a single formal parameter to simple_bind permits the compiler to
deduce R as the member function's return type, T as the member function's class, and Arg as the member function's
argument type. simple_bind's return type is a function object that is parameterized on the same types as simple_bind,
and whose constructor receives a pointer to the member function and an instance of the class (T). simple_bind simply
ignores the placeholder (the last argument to the function), and the reason why I've included it in the first place is to
simulate the syntax of Boost.Bind. In a better implementation of this concept, we would obviously need to make use
of that argument, but now we allow ourselves the luxury of letting it pass into oblivion. The implementation of the
function object is fairly straightforward.

template <typename R,typename T, typename Arg>

  class simple_bind_t {

  typedef R (T::*fn)(Arg);

  fn fn_;

  T t_;

public:

  simple_bind_t(fn f,const T& t):fn_(f),t_(t) {}

  R operator()(Arg& a) {

    return (t_.*fn_)(a);

  }

};

As we saw in simple_bind's implementation, the constructor accepts two arguments: the first is the pointer to a
member function and the second is a reference to const T that is copied and later used to invoke the function with a
user-supplied argument. Finally, the function call operator returns R, the return type of the member function, and
accepts an Arg argument, which is the type of the argument to be passed to the member function. The somewhat
obscure syntax for invoking the member function is this:

(t_.*fn_)(a);

.* is the pointer-to-member operator, used when the first operand is of class T; there's also another
pointer-to-member operator, ->*, which is used when the first operand is a pointer to T. What remains is to create a
placeholderthat is, a variable that is used in place of the actual argument. We can create such a placeholder by using
an unnamed namespace containing a variable of some type; let's call it placeholder:

namespace {

  class placeholder {};

  placeholder _1;

}

Let's create a simple class and a small application for testing this.

class Test {

public:

  void do_stuff(const std::vector<int>& v) {

    std::copy(v.begin(),v.end(),

      std::ostream_iterator<int>(std::cout," "));

  }

};

int main() {

  Test t;

  std::vector<int> vec;

  vec.push_back(42);

  simple_bind(&Test::do_stuff,t,_1)(vec);

}

When we instantiate the function simple_bind with the preceding arguments, the types are automatically deduced; R is
void, T is Test, and Arg is a reference to const std::vector<int>. The function returns an instance of
simple_bind_t<void,Test,Arg>, on which we immediately invoke the function call operator by passing the argument
vec.

 Hopefully, simple_bind has given you an idea of how binders work. Now, it's time to get back to Boost.Bind!

 More on Placeholders and Arguments

 The first example demonstrated that bind supports up to nine arguments, but it will serve us well to look a bit more
closely at how arguments and placeholders work. First of all, it's important to note that there is an important difference
between free functions and member functionswhen binding to a member function, the first argument to the bind
expression must be an instance of the member function's class! The easiest way to think about this rule is that this
explicit argument substitutes the implicit this that is passed to all non-static member functions. The diligent reader will
note that, in effect, this means that for binders to member functions, only (sic!) eight arguments are supported,
because the first will be used for the actual object. The following example defines a free function print_string and a
class some_class with a member function print_string, soon to be used in bind expressions.

#include <iostream>

#include <string>

#include "boost/bind.hpp"

class some_class {

public:

  typedef void result_type;

  void print_string(const std::string& s) const {

    std::cout << s << '\n';

  }

};

void print_string(const std::string s) {

  std::cout << s << '\n';

}

int main() {

  (boost::bind(&print_string,_1))("Hello func!");

  some_class sc;

  (boost::bind(&some_class::print_string,_1,_2))

    (sc,"Hello member!");

}

The first bind expression binds to the free function print_string. Because the function expects one argument, we need
to use one placeholder (_1) to tell bind which of its arguments will be passed as the first argument of print_string. To
invoke the resulting function object, we must pass the string argument to the function call operator. The argument is a
const std::string&, so passing a string literal triggers invocation of std::string's converting constructor.

(boost::bind(&print_string,_1))("Hello func!");

The second binder adapts a member function, print_string of some_class. The first argument to bind is a pointer to the
member function. However, a pointer to a non-static member function isn't really a pointer.[3] We must have an
object before we can invoke the function. That's why the bind expression must state that there are two arguments to
the binder, both of which are to be supplied when invoking it.

[3] Yes, I know how weird this sounds. It's still true, though.

boost::bind(&some_class::print_string,_1,_2);

To see why this makes sense, consider how the resulting function object can be used. We must pass to it both an
instance of some_class and the argument to print_string.

(boost::bind(&some_class::print_string,_1,_2))(sc,"Hello member!");

The first argument to the function call operator is this that is, the instance of some_class. Note that the first argument
can be a pointer (smart or raw) or a reference to an instance; bind is very accommodating. The second argument to
the function call operator is the member function's one argument. In this case, we've "delayed" both argumentsthat is,
we defined the binder such that it expects to get both the object and the member function's argument via its function
call operator. We didn't have to do it that way, however. For example, we could create a binder that invokes
print_string on the same object each time it is invoked, like so:

(boost::bind(&some_class::print_string,some_class(),_1))

  ("Hello member!");

The resulting function object already contains an instance of some_class, so there's only need for one placeholder (_1)
and one argument (a string) for the function call operator. Finally, we could also have created a so-called nullary
function object by also binding the string, like so:

(boost::bind(&some_class::print_string,

  some_class(),"Hello member!"))();

These examples clearly show the versatility of bind. It can be used to delay all, some, or none of the arguments
required by the function it encapsulates. It can also handle reordering arguments any way you see fit; just order the
placeholders according to your needs. Next, we'll see how to use bind to create sorting predicates on-the-fly.

 Dynamic Sorting Criteria

 When sorting the elements of a container, we sometimes need to create function objects that define the sorting
criteriawe need to do so if we are missing relational operators, or if the existing relational operators do not define the
sorting criteria we are interested in. We can sometimes use the comparison function objects from the Standard
Library (std::greater, std::greater_equal, and so forth), but only use comparisons that already exist for the typeswe
cannot define new ones at the call site. We'll use a class called personal_info for the purpose of showing how
Boost.Bind can help us in this quest. personal_info contains the first name, last name, and age, and it doesn't provide
any comparison operators. The information is immutable upon creation, and can be retrieved using the member
functions name, surname, and age.

class personal_info {

  std::string name_;

  std::string surname_;

  unsigned int age_;

public:

  personal_info(

    const std::string& n,

    const std::string& s,

    unsigned int age):name_(n),surname_(s),age_(age) {}

  std::string name() const {

    return name_;

  }

  std::string surname() const {

    return surname_;

  }

  unsigned int age() const {

    return age_;

  }

};

We make the class OutputStreamable by supplying the following operator:

std::ostream& operator<<(

  std::ostream& os,const personal_info& pi) {

  os << pi.name() << ' ' <<

    pi.surname() << ' ' << pi.age() << '\n';

  return os;

}

If we are to sort a container with elements of type personal_info, we need to supply a sorting predicate for it. Why
would we omit the relational operators from personal_info in the first place? One reason is because there are several
possible sorting options, and we cannot know which is appropriate for different users. Although we could also opt to
provide different member functions for different sorting criteria, this would add the burden of having all relevant sorting
criteria encoded in the class, which is not always possible. Fortunately, it is easy to create the predicate at the call site
by using bind. Let's say that we need the sorting to be performed based on the age (available through the member
function age). We could create a function object just for that purpose.

class personal_info_age_less_than :

  public std::binary_function<

    personal_info,personal_info,bool> {

public:

  bool operator()(

    const personal_info& p1,const personal_info& p2) {

     return p1.age()<p2.age();

  }

};

We've made the personal_info_age_less_than adaptable by publicly inheriting from binary_function. Deriving from
binary_function provides the appropriate typedefs needed when using, for example, std::not2. Assuming a vector, vec,
containing elements of type personal_info, we would use the function object like this:

std::sort(vec.begin(),vec.end(),personal_info_age_less_than());

This works fine as long as the number of different comparisons is limited. However, there is a potential problem in that
the logic is defined in a different place, which can make the code harder to understand. With a long and descriptive
name such as the one we've chosen here, there shouldn't be a problem, but not all cases are so clear-cut, and there is
a real chance that we'd need to supply a slew of function objects for greater than, less than or equal to, and so on.

 So, how can Boost.Bind help? Actually, it helps us out three times for this example. If we examine the problem at
hand, we find that there are three things we need to do, the first being to bind a logical operation, such as std::less.
This is easy, and gives us the first part of the code.

boost::bind<bool>(std::less<unsigned int>(),_1,_2);

Note that we are explicitly adding the return type by supplying the bool parameter to bind. This is sometimes
necessary, both on broken compilers and in contexts where the return type cannot be deduced. If a function object
contains a typedef, result_type, there is no need to explicitly name the return type.[4] Now, we have a function object
that accepts two arguments, both of type unsigned int, but we can't use it just yet, because the elements have the type
personal_info, and we need to extract the age from those elements and pass the age as arguments to std::less. Again,
we can use bind to do that.

[4] The Standard Library function objects all have result_type defined, so they work with bind's return type deduction
mechanism.

boost::bind(

  std::less<unsigned int>(),

  boost::bind(&personal_info::age,_1),

  boost::bind(&personal_info::age,_2));

Here, we create two more binders. The first one calls personal_info::age with the main binder's function call operator's
first argument (_1). The second one calls personal_info::age with the main binder's function call operator's second
argument (_2). Because std::sort passes two personal_info objects to the main binder's function call operator, the
result is to invoke personal_info::age on each of two personal_info objects from the vector being sorted. Finally, the
main binder passes the ages returned by the two new, inner binders' function call operator to std::less. This is exactly
what we need! The result of invoking this function object is the result of std::less, which means that we have a valid
comparison function object easily used to sort a container of personal_info objects. Here's how it looks in action:

std::vector<personal_info> vec;

vec.push_back(personal_info("Little","John",30));

vec.push_back(personal_info("Friar", "Tuck",50));

vec.push_back(personal_info("Robin", "Hood",40));

std::sort(

  vec.begin(),

  vec.end(),

  boost::bind(

    std::less<unsigned int>(),

    boost::bind(&personal_info::age,_1),

    boost::bind(&personal_info::age,_2)));

We could sort differently simply by binding to another member (variable or function) from personal_infofor example,
the last name.

std::sort(

  vec.begin(),

  vec.end(),

  boost::bind(

    std::less<std::string>(),

    boost::bind(&personal_info::surname,_1),

    boost::bind(&personal_info::surname,_2)));

This is a great technique, because it offers an important property: simple functionality implemented at the call site. It
makes the code easy to understand and maintain. Although it is technically possible to sort using binders based upon
complex criteria, it is not wise. Adding more logic to the bind expressions quickly loses clarity and succinctness.
Although it is sometimes tempting to do more in terms of binding, strive to write binders that are as clever as the
people who must maintain it, but no more so.

 Functional Composition, Part I

 One problem that's often looking for a solution is to compose a function object out of other functions or function
objects. Suppose that you need to test an int to see whether it is greater than 5 and less than, or equal to, 10. Using
"regular" code, you would do something like this:

if (i>5 && i<=10) {

  // Do something

}

When processing elements of a container, the preceding code only works if you put it in a separate function. When
this is not desirable, using a nested bind can express the same thing (note that this is typically not possible using
bind1st and bind2nd from the Standard Library). If we decompose the problem, we find that we need operations for
logical and (std::logical_and), greater than (std::greater), and less than or equal to (std::less_equal). The logical and
should look something like this:

boost::bind(std::logical_and<bool>(),_1,_2);

Then, we need another predicate that answers whether _1 is less than or equal to 10.

boost::bind(std::greater<int>(),_1,5);

Then, we need another predicate that answers whether _1 is less than or equal to 10.

boost::bind(std::less_equal<int>(),_1,10);

Finally, we need to logically and those two together, like so:

boost::bind(

  std::logical_and<bool>(),

  boost::bind(std::greater<int>(),_1,5),

  boost::bind(std::less_equal<int>(),_1,10));

A nested bind such as this is relatively easy to understand, though it has postfix order. Still, one can almost read the
code literally and determine the intent. Let's put this binder to the test in an example.

std::vector<int> ints;

ints.push_back(7);

ints.push_back(4);

ints.push_back(12);

ints.push_back(10);

int count=std::count_if(

  ints.begin(),

  ints.end(),

  boost::bind(

    std::logical_and<bool>(),

    boost::bind(std::greater<int>(),_1,5),

    boost::bind(std::less_equal<int>(),_1,10)));

std::cout << count << '\n';

std::vector<int>::iterator int_it=std::find_if(

  ints.begin(),

  ints.end(),

  boost::bind(std::logical_and<bool>(),

    boost::bind(std::greater<int>(),_1,5),

    boost::bind(std::less_equal<int>(),_1,10)));

if (int_it!=ints.end()) {

  std::cout << *int_it << '\n';

}

It is important to carefully indent the code properly when using nested binds, because the code can quickly become
hard to understand if one neglects sensible indentation. Consider the preceding clear code, and then look at the
following obfuscated example.

std::vector<int>::iterator int_it=

  std::find_if(ints.begin(),ints.end(),

    boost::bind<bool>(

    std::logical_and<bool>(),

    boost::bind<bool>(std::greater<int>(),_1,5),

      boost::bind<bool>(std::less_equal<int>(),_1,10)));

This is a general problem with long lines, of course, but it becomes apparent when using constructs such as those
described here, where long statements are the rule rather than the exception. So, please be nice to your fellow
programmers by making sure that your lines wrap in a way that makes them easy to read.

 One of the hard-working reviewers for this book asked why, in the previous example, two equivalent binders were
created, and if it wouldn't make more sense to create a binder object and use it two times. The answer is that because
we can't know the exact type of the binder (it's implementation defined) that's created when we call bind, we have no
way of declaring a variable for it. Also, the type typically is very complex, because its signature includes all of the type
information that's been captured (and deduced automatically) in the function bind. However, it is possible to store the
resulting function objects using other facilitiesfor example, those from Boost.Function. See "Library 11: Function 11"
for details on how this is accomplished.

 The composition outlined here corresponds to a popular extension to the Standard Library, namely the function
compose2 from the SGI STL, also known as compose_f_gx_hx in the (now deprecated) Boost.Compose library.

 Functional Composition, Part II

 Another useful functional composition is known as compose1 in SGI STL, and compose_f_gx in Boost.Compose.
These functionals offer a way to call two functions with an argument, and have the result of the innermost function
passed to the first function. An example sometimes says more than a thousand contrived words, so consider the
scenario where you need to perform two arithmetic operations on container elements of floating point type. We first
add 10% to the values, and then reduce the values with 10%; the example could also serve as a useful lesson to quite
a few people working in the financial sector.

std::list<double> values;

values.push_back(10.0);

values.push_back(100.0);

values.push_back(1000.0);

std::transform(

  values.begin(),

  values.end(),

  values.begin(),

  boost::bind(

 std::multiplies<double>(),0.90,

   boost::bind<double>(

      std::multiplies<double>(),_1,1.10)));

std::copy(

  values.begin(),

  values.end(),

  std::ostream_iterator<double>(std::cout," "));

How do you know which of the nested binds will be called first? As you've probably already noticed, it is always the
innermost bind that is evaluated first. This means that we could write the equivalent code somewhat differently.

std::transform(

  values.begin(),

  values.end(),

  values.begin(),

  boost::bind<double>(

  std::multiplies<double>(),

    boost::bind<double>(

      std::multiplies<double>(),_1,1.10),0.90));

Here, we change the order of the arguments passed to the bind, tacking on the argument to the first bind last in the
expression. Although I do not recommend this practice, it is useful for understanding how arguments are passed to
bind functions.

 Value or Pointer Semantics in bind Expressions?

 When we pass an instance of some type to a bind expression, it is copied, unless we explicitly tell bind not to copy it.
Depending on what we are doing, this can be of vital importance. To see what goes on behind our backs, we will
create a TRacer class that will tell us when it is default constructed, copy constructed, assigned to, and destructed.
That way, we can easily see how different uses of bind affect the instances that we pass. Here is the tracer class in its
entirety.

class tracer {

public:

  tracer() {

  std::cout << "tracer::tracer()\n";

}

tracer(const tracer& other) {

  std::cout << "tracer::tracer(const tracer& other)\n";

}

tracer& operator=(const tracer& other) {

  std::cout <<

    "tracer& tracer::operator=(const tracer& other)\n";

  return *this;

}

~tracer() {

  std::cout << "tracer::~tracer()\n";

}

void print(const std::string& s) const {

  std::cout << s << '\n';

  }

};

We put our tracer class to work with a regular bind expression like the one that follows.

tracer t;

boost::bind(&tracer::print,t,_1)

  (std::string("I'm called on a copy of t\n"));

Running this code produces the following output, which clearly shows that there is copying involved.

tracer::tracer()

tracer::tracer(const tracer& other)

tracer::tracer(const tracer& other)

tracer::tracer(const tracer& other)

tracer::~tracer()

tracer::tracer(const tracer& other)

tracer::~tracer()

tracer::~tracer()

I'm called on a copy of t

tracer::~tracer()

If we had been using objects where copying was expensive, we probably could not afford to use bind this way. There
is an advantage to the copying, however. It means that the bind expression and its resulting binder are not dependent
on the lifetime of the original object (t in this case), which is often the exact behavior desired. To avoid the copies, we
must tell bind that we intend to pass it a reference that it is supposed to use rather than a value. We do this with
boost::ref and boost::cref (for reference and reference to const, respectively), which are also part of the Boost.Bind
library. Using boost::ref with our tracer class, the testing code now looks like this:

tracer t;

boost::bind(&tracer::print,boost::ref(t),_1)(

  std::string("I'm called directly on t\n"));

Executing the code gives us this:

tracer::tracer()

I'm called directly on t

tracer::~tracer

That's exactly what's needed to avoid unnecessary copying. The bind expression uses the original instance, which
means that there are no copies of the tracer object. Of course, it also means that the binder is now dependent upon
the lifetime of the tracer instance. There's also another way of avoiding copies; just pass the argument by pointer
rather than by value.

tracer t;

boost::bind(&tracer::print,&t,_1)(

  std::string("I'm called directly on t\n"));

So, bind always copies. If you pass by value, the object is copied and that may be detrimental on performance or
cause unwanted effects. To avoid copying the object, you can either use boost::ref/boost::cref or use pointer
semantics.

 Virtual Functions Can Also Be Bound

 So far, we've seen how bind can work with non-member functions and non-virtual member functions, but it is, of
course, also possible to bind a virtual member function. With Boost.Bind, you use virtual functions as you would
non-virtual functionsthat is, just bind to the virtual function in the base class that first declared the member function
virtual. That makes the binder useful with all derived types. If you bind against a more derived type, you restrict the
classes with which the binder can be used.[5] Consider the following classes named base and derived:

[5] This is no different than when declaring a pointer to a class in order to invoke a virtual member function. The more
derived the type pointed to, the fewer classes can be bound to the pointer.

class base {

public:

  virtual void print() const {

    std::cout << "I am base.\n";

  }

  virtual ~base() {}

};

class derived : public base {

public:

  void print() const {

    std::cout << "I am derived.\n";

  }

};

Using these classes, we can test the binding of a virtual function like so:

derived d;

base b;

boost::bind(&base::print,_1)(b);

boost::bind(&base::print,_1)(d);

Running this code clearly shows that this works as one would hope and expect.

I am base.

I am derived.

The fact that virtual functions are supported should come as no surprise to you, but now we've shown that it works
just like other functions. On a related note, what would happen if you bind a member function that is later redefined by
a derived class, or a virtual function that is public in the base class but private in the derived? Will things still work? If
so, which behavior would you expect? Well, the behavior does not change whether you are using Boost.Bind or not.
Thus, if you bind to a function that is redefined in another classthat is, it's not virtual and the derived class adds a
member function with an identical signaturethe version in the base class is called. If a function is hidden, the binder can
still be invoked, because it explicitly accesses the function in the base class, which works even for hidden member
functions. Finally, if the virtual function is declared public in the base class, but is private in a derived class, invoking
the function on an instance of the derived class succeeds, because the access is through a base instance, where the
member is public. Of course, such a case indicates a seriously flawed design.

 Binding to Member Variables

 There are many occasions when you need to bind data members rather than member functions. For example, when
using std::map or std::multimap, the element type is std::pair<key const,data>, but the information you want to use is
often not the key, but the data. Suppose you want to pass the data from each element in a map to a function that
takes a single argument of the data type. You need to create a binder that forwards the second member of each
element (of type std::pair) to the bound function. Here's code that illustrates how to do that:

void print_string(const std::string& s) {

  std::cout << s << '\n';

}

std::map<int,std::string> my_map;

my_map[0]="Boost";

my_map[1]="Bind";

std::for_each(

  my_map.begin(),

  my_map.end(),

    boost::bind(&print_string, boost::bind(

      &std::map<int,std::string>::value_type::second,_1)));

You can bind to a member variable just as you can with a member function, or a free function. It should be noted that
to make the code easier to read (and write), it's a good idea to use short and convenient names. In the previous
example, the use of a typedef for the std::map helps improve readability.

typedef std::map<int,std::string> map_type;

boost::bind(&map_type::value_type::second,_1)));

Although the need to bind to member variables does not arise as often as for member functions, it is still very
convenient to be able to do so. Users of SGI STL (and derivatives thereof) are probably familiar with the select1st
and select2nd functions. They are used to select the first or the second member of std::pair, which is the same thing
that we're doing in this example. Note that bind works with arbitrary types and arbitrary names, which is definitively a
plus.

 To Bind or Not to Bind

 The great flexibility brought by the Boost.Bind library also offers a challenge for the programmer, because it is
sometimes very tempting to use a binder, although a separate function object is warranted. Many tasks can and
should be accomplished with the help of Bind, but it's an error to go too farand the line is drawn where the code
becomes hard to read, understand, and maintain. Unfortunately, the position of the line greatly depends on the
programmers that share (by reading, maintaining, and extending) the code, as their experience must dictate what is
acceptable and what is not. The advantage of using specialized function objects is that they can typically be made
quite self-explanatory, and to provide the same clear message using binders is a challenge that we must diligently try to
overcome. For example, if you need to create a nested bind that you have trouble understanding, chances are that you
have gone too far. Let me explain this with code.

#include <iostream>

#include <string>

#include <map>

#include <vector>

#include <algorithm>

#include "boost/bind.hpp"

void print(std::ostream* os,int i) {

  (*os) << i << '\n';

}

int main() {

  std::map<std::string,std::vector<int> > m;

  m["Strange?"].push_back(1);

  m["Strange?"].push_back(2);

  m["Strange?"].push_back(3);

  m["Weird?"].push_back(4);

  m["Weird?"].push_back(5);

  std::for_each(m.begin(),m.end(),

    boost::bind(&print,&std::cout,

    boost::bind(&std::vector<int>::size,

    boost::bind(

      &std::map<std::string,

        std::vector<int> >::value_type::second,_1))));

}

What does the preceding code actually do? There are people who read code like this fluently,[6] but for many of us
mortals, it takes some time to figure out what's going on. Yes, the binder calls the member function size on whatever
exists as the pair member second (the std::map<std::string,std::vector<int> >::value_type). In cases like this, where the
problem is simple yet complex to express using a binder, it often makes sense to create a small function object instead
of a complex binder that some people will definitely have a hard time understanding. A simple function object that
does the same thing could look something like this:

[6] Hello, Peter Dimov.

class print_size {

  std::ostream& os_;

  typedef std::map<std::string,std::vector<int> > map_type;

public:

  print_size(std::ostream& os):os_(os) {}

  void operator()(

    const map_type::value_type& x) const {

      os_ << x.second.size() << '\n';

  }

};

The great advantage in this case comes when we are using the function object, whose name is self-explanatory.

std::for_each(m.begin(),m.end(),print_size(std::cout));

This (the source for the function object and the actual invocation) is to be compared with the version using a binder.

std::for_each(m.begin(),m.end(),

  boost::bind(&print,&std::cout,

  boost::bind(&std::vector<int>::size,

  boost::bind(

    &std::map<std::string,

      std::vector<int> >::value_type::second,_1))));

Or, if we had been a bit more responsible and created terse typedefs for the vector and map:

std::for_each(m.begin(),m.end(),

  boost::bind(&print,&std::cout,

  boost::bind(&vec_type::size,

  boost::bind(&map_type::value_type::second,_1))));

That's a bit easier to parse, but it's still a bit too much.

 Although there may be some good arguments for using the bind version, I think that the point is clearbinders are
incredibly useful tools that should be used responsibly, where they add value. This is very, very common when using
the Standard Library containers and algorithms. But when things get too complicated, do it the old fashioned way.

 Let Binders Handle State

 There are several options available to use when creating a function object like print_size. The version that we created
in the previous section stored a reference to a std::ostream, and used that ostream to print the return value of size for
the member second on the map_type::value_type argument. Here's the original print_size again:

class print_size {

  std::ostream& os_;

  typedef std::map<std::string,std::vector<int> > map_type;

public:

   print_size(std::ostream& os):os_(os) {}

  void operator()(

    const map_type::value_type& x) const {

      os_ << x.second.size() << '\n';

  }

};

An important observation for this class is that is has state, through the stored std::ostream. We could remove the state
by adding the ostream as an argument to the function call operator. This would mean that the function object becomes
stateless.

class print_size {

  typedef std::map<std::string,std::vector<int> > map_type;

public:

  typedef void result_type;

  result_type operator()(std::ostream& os,

    const map_type::value_type& x) const {

      os << x.second.size() << '\n';

  }

};

Note that this version of print_size is well behaved when used with bind, through the addition of the result_type
typedef. This relieves users from having to explicitly state the return type of the function object when using bind. In this
new version of print_size, users need to pass an ostream as an argument when invoking it. That's easy when using
binders. Rewriting the example from the previous section with the new print_size gives us this:

#include <iostream>

#include <string>

#include <map>

#include <vector>

#include <algorithm>

#include "boost/bind.hpp"

// Definition of print_size omitted

int main() {

  typedef std::map<std::string,std::vector<int> > map_type;

  map_type m;

  m["Strange?"].push_back(1);

  m["Strange?"].push_back(2);

  m["Strange?"].push_back(3);

  m["Weird?"].push_back(4);

  m["Weird?"].push_back(5);

  std::for_each(m.begin(),m.end(),

    boost::bind(print_size(),boost::ref(std::cout),_1));

}

The diligent reader might wonder why print_size isn't a free function now, because it doesn't carry state anymore. In
fact, it can be

void print_size(std::ostream& os,

  const std::map<std::string,std::vector<int> >::value_type& x) {

  os << x.second.size() << '\n';

}

But there are more generalizations to consider. Our current version of print_size requires that the second argument to
the function call operator be a reference to const std::map<std::string,std::vector<int> >, which isn't very general. We
can do better, by parameterizing the function call operator on the type. This makes print_size usable with any
argument that contains a public member called second, which in turn has a member function size. Here's the improved
version:

class print_size {

public:

  typedef void result_type;

  template <typename Pair> result_type operator()

    (std::ostream& os,const Pair& x) const {

    os << x.second.size() << '\n';

  }

};

Usage is the same with this version as the previous, but it's much more flexible. This kind of generalization becomes
more important than usual when creating function objects that can be used in bind expressions. Because the number of
cases where the function objects can be used increase markedly, most any potential generalization is worthwhile. In
that vein, there is one more change that we could make to further relax the requirements for types to be used with
print_size. The current version of print_size requires that the second argument of the function call operator be a
pair-like objectthat is, an object with a member called second. If we decide to require only that the argument contain
a member function size, the function object starts to really deserve its name.

class print_size {

public:

  typedef void result_type;

  template <typename T> void operator()

    (std::ostream& os,const T& x) const {

    os << x.size() << '\n';

  }

};

Of course, although print_size is now true to its name, we require more of the user for the use case that we've already
considered. Usage now includes "manually" binding to map_type::value_type::second.

std::for_each(m.begin(),m.end(),

  boost::bind(print_size(),boost::ref(std::cout),

    boost::bind(&map_type::value_type::second,_1)));

Such are often the tradeoffs when using bindgeneralizations can only take you so far before starting to interfere with
usability. Had we taken things to an extreme, and removed even the requirement that there be a member function size,
we'd complete the circle and be back where we started, with a bind expression that's just too complex for most
programmers.
 [View full width]

std::for_each(m.begin(),m.end(),

  boost::bind(&print[7],&std::cout,

  boost::bind(&vec_type::size,

  boost::bind(&map_type::value_type::second,_1))));

[7] The print function would obviously be required, too, without some lambda facility.

 A Boost.Bind and Boost.Function Teaser

 Although the material that we have covered in this chapter shouldn't leave you wanting for more, there is actually a
very useful synergy between Boost.Bind and another library, Boost.Function, that provides still more functionality. We
shall see more of the added value in "Library 11:Function 11," but I'd like to give you a hint of what's to come. As
we've seen, there is no apparent way of storing our binders for later usewe only know that they are compatible
function objects with some (unknown) signature. But, when using Boost.Function, storing functions for later invocation
is exactly what the library does, and thanks to the compatibility with Boost.Bind, it's possible to assign binders to
functions, saving them for later invocation. This is an enormously useful concept, which enables adaptation and
promotes loose coupling.





Bind Summary
 Use Bind when



 You need to bind a call to a free function, and some or all of its arguments


You need to bind a call to a member function, and some or all of its arguments


You need to compose nested function objects

 The existence of a generalized binder is a tremendously useful tool when it comes to writing terse, coherent code. It
reduces the number of small function objects created for adapting functions/function objects, and combinations of
functions. Although the Standard Library already offers a small part of the functionality found in Boost.Bind, there are
significant improvements that make Boost.Bind the better choice in most places. In addition to the simplification of
existing features, Bind also offers powerful functional composition features, which provide the programmer with great
power without negative effects on maintenance. If you've taken the time to learn about bind1st, bind2nd, ptr_fun,
mem_fun_ref, and so forth, you'll have little or no trouble transitioning to Boost.Bind. If you've yet to start using the
current binder offerings from the C++ Standard Library, I strongly suggest that you start by using Bind, because it is
both easier to learn and more powerful.

 I know many programmers who have yet to experience the wonders of binders in general, and function composition
in particular. If you used to be one of them, I'm hoping that this chapter has managed to convey some of the
tremendous power that is brought forth by the concept as such. Moreover, think about the implications this type of
function, declared and defined at the call site, will have on maintenance. It's going to be a breeze compared to the
dispersion of code that can easily be caused by small, innocent-looking[8] function objects that are scattered around
the classes merely to provide the correct signature and perform a trivial task.

[8] But they're not.

 The Boost.Bind library is created and maintained by Peter Dimov, who has, besides making it such a complete
facility for binding and function composition, also managed to make it work cleanly for most compilers.
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How Does the Lambda Library Improve Your Programs?


 Adapts functions and function objects for use with Standard Library algorithms


Binds arguments to function calls


Transforms arbitrary expressions into function objects compatible with the Standard Library algorithms


Defines unnamed functions at the call site, thereby improving readability and maintainability of the code


Implements predicates when and where needed

 When using the Standard Library, or any library employing a similar design that relies on algorithmic configuration by
the means of functions and function objects, one often ends up writing lots of small function objects that perform quite
trivial operations. As we saw in "Library 9: Bind 9," this can quickly become a problem, because an explosion of
small classes that are scattered through the code base is not easily maintained. Also, understanding the code where
the function objects are actually invoked is harder, because part of the functionality is defined elsewhere. A perfect
solution to this problem is a way to define these functions or function objects directly at the call site. This typically
makes the code faster to write, easier to read, and more readily maintained, as the definition of the functionality then
resides in the location where it is used. This is what the Boost.Lambda library offers, unnamed functions defined at the
call site. Boost.Lambda works by creating function objects that can be defined and invoked directly, or stored for
later invocation. This is similar to the offerings from the Boost.Bind library, but Boost.Lambda does both argument
binding and much more, by adding control structures, automatic conversions of expressions into function objects, and
even support for exception handling in lambda expressions.

 The term lambda expression, or lambda function, originates from functional programming and lambda calculus. A
lambda abstraction defines an unnamed function. Although lambda abstractions are ubiquitous in functional
programming languages, that's not the case for most imperative programming languages, such as C++. But, using
advanced techniques such as expression templates, C++ makes it possible to augment the language with a form of
lambda expressions.

 The first and foremost motivation for creating the Lambda library is to enable unnamed functions for use with the
Standard Library algorithms. Because the use of the Standard Library has virtually exploded since the first C++
Standard in 1998, our knowledge of what's good and what's missing has rapidly increasedand one of the parts that
can be problematic is the definition of numerous small function objects, where a simple expression would seem to
suffice. The function object issue is obviously addressed by this library, but there is still room for exploration of the
uses of lambda functions. Now that lambda functions are available, we have the opportunity to apply them to
problems that previously required totally different solutions. It's both fascinating and exciting that it is possible to
explore new programming techniques in a language as mature as C++. What new idioms and ways of solving
problems will arise from the presence of unnamed functions and expression templates? The truth is that we don't
know, because we have yet to try them all out! Still, the focus here is on the practical problems that the library
explicitly addressesavoiding code bloat and scattered functionality through lambda expressionsfunctions defined at the
call site. We can do many wonderful things with thisand we can be really terse about it, which should satisfy both
programmers, who can focus more on the problem at hand, and their managers, who can reap the benefits of a higher
production rate (and, hopefully, more easily maintained code!).



How Does Lambda Fit with the Standard Library?
 The library addresses a problem that is often encountered when using the Standard Library algorithmsthe need to
define many simple function objects just to comply with the requirements of the algorithms. Almost all of the Standard
Library algorithms also come in a version that accepts a function object, to perform operations such as ordering,
equality, transformations, and so on. To a limited extent, the Standard Library supports functional composition,
through the binders bind1st and bind2nd. However, these are very limited in what they can produce, and they provide
only argument binding, not bindings for expressions. Given that both flexible support for binding arguments and for
creating function objects directly from expressions are available in the Boost.Lambda library, it is an excellent
companion to the C++ Standard Library.



Lambda

 Header: "boost/lambda/lambda.hpp"

 This includes the core of the library.

"boost/lambda/bind.hpp"

defines bind functions.

"boost/lambda/if.hpp"

defines the lambda equivalent of if, and the conditional operator.

"boost/lambda/loops.hpp"

defines looping constructs (for example, while_loop and for_loop).

"boost/lambda/switch.hpp"

defines the lambda equivalent of switch statements.

"boost/lambda/construct.hpp"

defines tools for adding construction/destruction and new/delete to lambda expressions.

"boost/lambda/casts.hpp"

provides cast operators for lambda expressions.

"boost/lambda/exceptions.hpp"

defines tools for exception handling in lambda expressions.

"boost/lambda/algorithm.hpp" and "boost/lambda/numeric.hpp"

defines lambda versions (essentially function objects) of C++ Standard library algorithms to be used in nested function
invocations.





Usage
 This library, like most other Boost libraries, is purely defined in header files, which means that you don't have to build
anything to get started. However, understanding a little something about lambda expressions is definitely helpful. The
following sections will walk you through this library, even including how to perform exception handling in lambda
expressions! The library is quite extensive, and there's a lot of power waiting ahead. A lambda expression is often
called an unnamed function. It is declared and defined when it's neededthat is, at the call site. This is very useful,
because we often need to define an algorithm in another algorithm, something that isn't really supported by the
language. Instead, we externalize behavior by bringing in functions and function objects from a wider scope, or use
nested loop constructs with the algorithmic expressions encoded in the loops. As we shall see, this is where lambda
expressions come to the rescue. This section consists of many examples, and there is often one part of the example
that demonstrates how the solution would be coded using "traditional" tools. The intent is to show when and how
lambda expressions help programmers write more logic with less code. There is a certain learning curve associated
with lambda expressions, and the syntax may seem daunting at first glance. Like every new paradigm or tool, this one
must be learnedbut trust me when I say that the profit definitely outweighs the cost.

 A Little Teaser

 The first program using Boost.Lambda should whet your appetite for lambda expressions. First of all, note that the
lambda types are declared in the namespace boost::lambdatypically, you bring these declarations into scope with a
using directive or using declarations. The core functionality of the library is available when including the file
"boost/lambda/lambda.hpp", which is sufficient for our first program.

#include <iostream>

#include "boost/lambda/lambda.hpp"

#include "boost/function.hpp"

int main() {

  using namespace boost::lambda;

  (std::cout << _1 << " " << _3 << " " << _2 << "!\n")

    ("Hello","friend","my");

  boost::function<void(int,int,int)> f=

    std::cout << _1 << "*" << _2 << "+" << _3

      << "=" <<_1*_2+_3 << "\n";

  f(1,2,3);

  f(3,2,1);

}

The first expression looks peculiar at first glance, but it helps to mentally divide the expression as the parentheses do;
the first part is a lambda expression that basically says, "print these arguments to std::cout, but don't do it right now,
because I don't yet know the first, second, and third arguments." The second part of the expression actually invokes
the function by saying, "Hey! Here are the three arguments that you need." Look at the first part of the expression
again.

std::cout << _1 << " " << _3 << " " << _2 << "!\n"

You'll note that there are three placeholders, aptly named _1, _2, and _3, in the expression.[1] These placeholders
denote the delayed arguments to the lambda expression. Note that unlike the syntax of many functional programming
languages, there's no keyword or name for creating lambda expressions; it is the presence of the placeholders that
signal that this is a lambda expression. So, this is a lambda expression that accepts three arguments of any type that
support streaming through operator<<. The arguments are printed to cout in the order 1-3-2. Now, in the example,
we enclose this expression in parentheses, and then invoke the resulting function object by passing three arguments to
it: "Hello", "friend", and "my". This results in the following output:

[1] It may not have occurred to you before that identifiers like _1 are legal, but they are. Identifiers may not start with
a number, but they may start with an underscore, and numbers can appear anywhere else in an identifier.

Hello my friend!

Typically, we use function objects to pass into algorithms, which we shall investigate further, but to try something a
little more useful, let's store the lambda expression in another delayed function, namely boost::function. These useful
creatures are described in the following chapter, "Library 11: Function 11," but for now, it suffices to know that you
can pass a function or a function object to an instance of boost::function, and store it there for later invocation. In the
example, we define such a function, f, like so:

boost::function<void(int,int,int)> f;

This declaration states that f can store functions and function objects that can be invoked with three arguments, all of
the type int. Then, we assign such a function object using a lambda expression that captures the algorithm X=S*T+U,
and then prints the expression and the result to cout.

boost::function<void(int,int,int)> f=

std::cout <<

    _1 << "*" << _2 << "+" << _3 << "=" <<_1*_2+_3 << "\n";

The placeholders can be used several times in an expression, as shown here. Our function f can now be invoked just
like an ordinary function, like so:

f(1,2,3);

f(3,2,1);

The output of running this code follows.

1*2+3=5

3*2+1=7

Any expression where standard operators (the ones that can be overloaded!) are used can be captured in a lambda
expression, and stored for later invocation, or passed directly to an algorithm. You will note that when no placeholder
is used in a lambda expression (we haven't yet seen how to do that, but it can be done), the result is a nullary function
(object). For comparison, when only _1 is used, the result is a unary function object; when just _1 and _2 are used,
the result is a binary function object; and when just _1, _2, and _3 are used, the result is a ternary function object.
These first lambda expressions have all benefited from the fact that the expression uses only built-in or common C++
operators, which allows coding the algorithms directly. Read on to see how to bind expressions to other functions,
class member functions, and even to data members!

 BindWhen Operators Aren't Enough

 What we've seen so far is great when there are operators available to support our expressions, but that's not always
the case. Sometimes, we need to call another function as part of the expression, and that's often referred to as
binding; the difference between the binding that we've already seen when creating lambda expressions is that this type
of binding requires a separate keyword, bind (hey, that's a clever name!). A bind expression is a delayed function call,
either to a free function or a member function. There can be zero or more arguments to the function, some of these
can be set directly, some supplied when the function is invoked. With the current version of Boost.Lambda, up to nine
arguments are supported (three of which can be applied later through the use of placeholders). To use the binders,
you need to include the header "boost/lambda/bind.hpp".

 When binding to a function, the first argument is the address of the function, and the subsequent arguments are the
arguments. For a non-static class member function, there is always an implicit this argument; in a bind expression, the
this argument must be explicitly added. For convenience, the syntax is the same regardless of whether the object is
passed by reference or by pointer. So, when binding to a member function, the second argument (that is, the first after
the function pointer) is the actual object to which the function should be invoked. It's even possible to bind to data
members, which is also demonstrated in the following example:

#include <iostream>

#include <string>

#include <map>

#include <algorithm>

#include "boost/lambda/lambda.hpp"

#include "boost/lambda/bind.hpp"

int main() {

  using namespace boost::lambda;

  typedef std::map<int,std::string> type;

  type keys_and_values;

  keys_and_values[3]="Less than pi";

  keys_and_values[42]="You tell me";

  keys_and_values[0]="Nothing, if you ask me";

  std::cout << "What's wrong with the following expression?\n";

  std::for_each(

    keys_and_values.begin(),

    keys_and_values.end(),

    std::cout << "key=" <<

      bind(&type::value_type::first,_1) << ", value="

        << bind(&type::value_type::second,_1) << '\n');

  std::cout << "\n...and why does this work as expected?\n";

  std::for_each(

    keys_and_values.begin(),

    keys_and_values.end(),

    std::cout << constant("key=") <<

      bind(&type::value_type::first,_1) << ", value="

        << bind(&type::value_type::second,_1) << '\n');

  std::cout << '\n';

  // Print the size and max_size of the container

  (std::cout << "keys_and_values.size()=" <<

    bind(&type::size,_1) << "\nkeys_and_values.max_size()="

      << bind(&type::max_size,_1))(keys_and_values);

}

This example starts out with the creation of a std::map with keys of type int and values of type std::string. Remember
that the value_type of std::map is a std::pair with the key type and the value type as members. Thus, for our map, the
value_type is std::pair<int,std::string>, so in the for_each algorithm, the function object that we pass will receive such a
type. Given this pair, it would be nice to be able to extract the two members (the key and the value), and that's
exactly what our first bind expression does.

bind(&type::value_type::first,_1)

This expression yields a function object that, when invoked, retrieves the data member first, of the nested type
value_type, of its argument, the pair we discussed earlier. In our example, first is the key type of the map, and is thus
a const int. This is exactly the same syntax as for member functions. But you'll note that our lambda expression does a
bit more; the first part of the expression is

std::cout << "key=" << ...

This compiles, and it works, but it's probably not what's intended. This expression is not a lambda expression; it's just
an expression, period. When invoked, it prints key=, but it is only invoked once when the expression is evaluated, not
once for each element visited by std::for_each. In the example, the intention is for key= to be the prefix for each
key/value pair of our keys_and_values. In earlier examples, we wrote code similar to this, but it didn't exhibit this
problem. The reason is that we used a placeholder as the first argument to the operator<<, which made it a valid
lambda expression. Here, we must somehow tell Boost.Lambda that it's supposed to create a function object
including the "key=". This is done with the function constant, which creates a nullary function object, one that takes no
arguments; it merely stores its argument, and then returns it when invoked.

std::cout << constant("key=") << ...

This little change makes all the difference, as shown by the output when running this program.

What's wrong with the following expression?

key=0, value=Nothing, if you ask me

3, value=Less than pi

42, value=You tell me

...and why does this work as expected?

key=0, value=Nothing, if you ask me

key=3, value=Less than pi

key=42, value=You tell me

keys_and_values.size()=3

keys_and_values.max_size()=4294967295

The final part of the example is a binder that binds to a member function rather than a data member; the syntax is
identical, and you'll note that in both cases, there's no need to explicitly state the return type of the function. This magic
is achieved by automatically deducing the return type of the function or member function, and the type if the binder
refers to a data member. However, there is a case where the return type cannot be deduced, and that's when a
function object is to be bound; for free functions and member functions, it's a straightforward task to deduce the
return type,[2] but for function objects it's impossible. There are two ways around this limitation of the language, and
the first is brought forth by the Lambda library itself: overriding the return type deduction by explicitly stating it as a
template parameter to the call to bind, as demonstrated by the following program.

[2] Your mileage may wary. Let's just say that it's technically doable.

class double_it {

public:

  int operator()(int i) const {

    return i*2;

  }

};

int main() {

  using namespace boost::lambda;

  double_it d;

  int i=12;

  // If you uncomment the following expression,

  // the compiler will complain;

  // it's just not possible to deduce the return type

  // of the function call operator of double_it.

  // (std::cout << _1 << "*2=" << (bind(d,_1)))(i);

  (std::cout << _1 << "*2=" << (bind<int>(d,_1)))(i);

  (std::cout << _1 << "*2=" << (ret<int>(bind(d,_1))))(i);

}

There are two versions of the mechanism that disables the return type deduction systemthe shorthand version is simply
passing the return type as a parameter to bind, the second is by using ret, which must enclose any lambda/bind
expression where the automatic deduction would otherwise fail. This can quickly become tedious in nested lambda
expressions, but there is an even better way, which allows the deduction to succeed. We'll cover that later in this
chapter.

 Also note that a bind expression can consist of another bind expression, which makes binders a great tool for
functional composition. There's plenty of power in nested binds, but tread carefully, because with the power comes
additional complexity when reading, writing, and understanding the code.

 I Don't Like _1, _2, and _3Can I Rename Them?

 Some people aren't comfortable with the predefined placeholder names, so the library offers a convenient way to
change them[3] to anything the user wants. This is accomplished by declaring variables of the type
boost::lambda::placeholderX_type, where X is 1, 2, or 3. For example, assuming one prefers the names Arg1, Arg2,
and Arg3 as names for the placeholders:

[3] Technically, to add new ones.

#include <iostream>

#include <vector>

#include <string>

#include "boost/lambda/lambda.hpp"

boost::lambda::placeholder1_type Arg1;

boost::lambda::placeholder2_type Arg2;

boost::lambda::placeholder3_type Arg3;

template <typename T,typename Operation>

  void for_all(T& t,Operation Op) {

    std::for_each(t.begin(),t.end(),Op);

  }

int main() {

  std::vector<std::string> vec;

  vec.push_back("What are");

  vec.push_back("the names");

  vec.push_back("of the");

  vec.push_back("placeholders?");

  for_all(vec,std::cout << Arg1 << " ");

  std::cout << "\nArg1, Arg2, and Arg3!";

}

The placeholder variables you declare this way work just like _1, _2, and _3. As an aside, note the function for_all
that is introduced hereit offers a convenient way of avoiding some redundant typing when frequent operations are to
be applied to all elements of a containerthat is, when one would typically use for_each. The function accepts two
arguments: a reference to a container, and a function or function object. For each element of this container, the
element is applied to the function or function objects. I tend to find it quite useful from time to timeperhaps you will
too. Running the program produces the following output:

What are the names of the placeholders?

Arg1, Arg2, and Arg3!

Creating your own placeholder names can be a liability for others reading your code; most programmers who know
Boost.Lambda (or Boost.Bind) will be familiar with the placeholder names _1, _2, and _3. If you decide to call them
q, w, and e, you'll most likely need to explain what they mean to your coworkers. (And you'll probably have to repeat
the explanation often!)

 I Want to Give My Constants and Variables Names!

 Sometimes, the readability of the code can be improved by giving names to constants and variables. As you'll recall,
we must sometimes create a lambda expression out of an expression that would otherwise be evaluated immediately.
This is done using either constant or var; they operate on constant and mutable variables, respectively. We've already
used constant, and var basically works the same way. In complex or long lambda expressions, giving a name to one
or more constants can make the expression significantly easier to understand; the same goes for variables. To create
named constants and variables, one simply has to define a variable of the type boost::lambda::constant_type<T>::type
and boost::lambda::var_type<T>::type, where T is the type of the wrapped constant or variable. Consider this use of a
lambda expression:

for_all(vec,

  std::cout << constant(' ') << _ << constant('\n'));

It can be rather tedious to use constant all of the time. Following is a sample program that names two constants,
newline and space, and uses them in a lambda expression.

#include <iostream>

#include <vector>

#include <algorithm>

#include "boost/lambda/lambda.hpp"

int main() {

  using boost::lambda::constant;

  using boost::lambda::constant_type;

  constant_type<char>::type newline(constant('\n'));

  constant_type<char>::type space(constant(' '));

  boost::lambda::placeholder1_type _;

  std::vector<int> vec;

  vec.push_back(0);

  vec.push_back(1);

  vec.push_back(2);

  vec.push_back(3);

  vec.push_back(4);

  for_all(vec,std::cout << space << _ << newline);

  for_all(vec,

    std::cout << constant(' ') << _ << constant('\n'));

}

This is a convenient way of avoiding repetitious typing, and making the lambda expressions a little bit clearer.
Following is a similar example, which first defines a type memorizer, which keeps track of all the values that have been
assigned to it. Then, a named variable is created using var_type, to be used in a subsequent lambda expression. You'll
soon see that named constants tend to be needed much more often than named variables, but there are situations
where it makes perfect sense to use named variables, too.[4]

[4] Especially when using the lambda looping constructs.

#include <iostream>

#include <vector>

#include <algorithm>

#include "boost/lambda/lambda.hpp"

template <typename T> class memorizer {

  std::vector<T> vec_;

public:

  memorizer& operator=(const T& t) {

    vec_.push_back(t);

    return *this;

  }

  void clear() {

    vec_.clear();

  }

  void report() const {

    using boost::lambda::_1;

    std::for_each(

      vec_.begin(),

      vec_.end(),

      std::cout << _1 << ",");

  }

};

int main() {

  using boost::lambda::var_type;

  using boost::lambda::var;

  using boost::lambda::_1;

  std::vector<int> vec;

  vec.push_back(0);

  vec.push_back(1);

  vec.push_back(2);

  vec.push_back(3);

  vec.push_back(4);

  memorizer<int> m;

  var_type<memorizer<int> >::type mem(var(m));

  std::for_each(vec.begin(),vec.end(),mem=_1);

  m.report();

  m.clear();

  std::for_each(vec.begin(),vec.end(),var(m)=_1);

  m.report();

}

That's all there is to it, but before you think that you've got all this nailed down, answer this: What should be the type
T in the following declaration?

constant_type<T>::type hello(constant("Hello"));

Is it a char*? A const char*? No, it's actually a constant reference to an array of six characters (the terminating null
counts, too), which gives us this:

constant_type<const char (&)[6]>::type

  hello(constant("Hello"));

This isn't a pretty sight, and it's a pain for anyone who needs to update the literalwhich is why I find it much cleaner to
use the good old std::string to get the job done.

constant_type<std::string>::type

  hello_string(constant(std::string("Hello")));

This way, you have to type a little bit more the first time, but you don't need to count the characters, and if there's ever
a need to change the string, it just works.

 Where Did ptr_fun and mem_fun Go?

 Perhaps you've already thought of thisbecause Boost.Lambda creates standard-conforming function objects, there's
actually no need to remember the adaptor types from the Standard Library. A lambda expression that binds the
function or member function works just as well, and the syntax is the same regardless of the type that's being bound
to. This allows the code to stay focused on the task, rather than on some syntactic peculiarity. Here's an example that
illustrates these benefits:

#include <iostream>

#include <vector>

#include <algorithm>

#include <functional>

#include "boost/lambda/lambda.hpp"

#include "boost/lambda/bind.hpp"

void plain_function(int i) {

  std::cout << "void plain_function(" << i << ")\n";

}

class some_class {

public:

  void member_function(int i) const {

    std::cout <<

      "void some_class::member_function(" << i << ") const\n";

  }

};

int main() {

  std::vector<int> vec(3);

  vec[0]=12;

  vec[1]=10;

  vec[2]=7;

  some_class sc;

  some_class* psc=&sc;

  // Bind to a free function using ptr_fun

  std::for_each(

    vec.begin(),

    vec.end(),

    std::ptr_fun(plain_function));

  // Bind to a member function using mem_fun_ref

  std::for_each(vec.begin(),vec.end(),

    std::bind1st(

      std::mem_fun_ref(&some_class::member_function),sc));

  // Bind to a member function using mem_fun

  std::for_each(vec.begin(),vec.end(),

    std::bind1st(

      std::mem_fun(&some_class::member_function),psc));

  using namespace boost::lambda;

  std::for_each(

    vec.begin(),

    vec.end(),

    bind(&plain_function,_1));

  std::for_each(vec.begin(),vec.end(),

    bind(&some_class::member_function,sc,_1));

  std::for_each(vec.begin(),vec.end(),

    bind(&some_class::member_function,psc,_1));

}

There's really no need to make the case for lambda expressions and binders here, is there? Rather than using three
different constructs for performing virtually the same thing, we'll let bind figure out what to do, and then be done with
it. In the example, it was necessary to use std::bind1st to enable the instance of some_class to be bound to the
invocation; with Boost.Lambda, that's part of the job description. So, the next time you are wondering whether to use
ptr_fun, mem_fun, or mem_fun_refstop wondering and use Boost.Lambda instead!

 Arithmetic Operations Without <functional>

 We often perform arithmetic operations on elements from sequences, and the Standard Library helps out by
providing a number of binary function objects for arithmetic operations, such as plus, minus, divides, modulus, and so
on. However, these function objects require more typing than one likes, and often one argument needs to be bound,
which in turn requires the use of binders. When nesting such arithmetic, expressions quickly become unwieldy, and
this is yet another area where lambda expressions really shine. Because we are dealing with operators here, both in
arithmetic and C++ terms, we have the power to directly code our algorithms as lambda expressions. To give a short
motivation, consider the trivial problem of incrementing a numeric value by 4. Then, consider doing that same inside a
Standard Library algorithm (such as TRansform). Although the first comes very naturally, the second is a totally
different beast (which will drive you into the arms of handwritten loops). Using a lambda expression, focus remains on
the arithmetic. In the following example, we'll first use std::bind1st and std::plus to add 4 to each element of a
containerand then we'll use lambda to subtract 4.

#include <iostream>

#include <vector>

#include <algorithm>

#include <functional>

#include "boost/lambda/lambda.hpp"

#include "boost/lambda/bind.hpp"

int main() {

  using namespace boost::lambda;

  std::vector<int> vec(3);

  vec[0]=12;

  vec[1]=10;

  vec[2]=7;

  // Transform using std::bind1st and std::plus

  std::transform(vec.begin(),vec.end(),vec.begin(),

    std::bind1st(std::plus<int>(),4));

 // Transform using a lambda expression

  std::transform(vec.begin(),vec.end(),vec.begin(),_1-=4);

}

The difference is astounding! When adding 4 using "traditional" means, it's hard for the untrained eye to see what's
going on. Reading the code, we see that we are binding the first argument of a default-constructed instance of std::plus
to 4. The lambda expression spells it outsubtract 4 from the element. If you think that the version using bind1st and
plus isn't that bad, try it with longer expressions.

 Boost.Lambda supports all of the arithmetic operators in C++, so there's rarely a need to include <functional> just
for the sake of arithmetic function objects. The following example demonstrates the use of some of those arithmetic
operators. Each element in the vector vec is modified using the additive and multiplicative operators.

#include <iostream>

#include <vector>

#include <algorithm>

#include "boost/lambda/lambda.hpp"

int main() {

  using namespace boost::lambda;

  std::vector<int> vec(3);

  vec[0]=1;

  vec[1]=2;

  vec[2]=3;

  std::for_each(vec.begin(),vec.end(),_1+=10);

  std::for_each(vec.begin(),vec.end(),_1-=10);

  std::for_each(vec.begin(),vec.end(),_1*=3);

  std::for_each(vec.begin(),vec.end(),_1/=2);

  std::for_each(vec.begin(),vec.end(),_1%=3);

}

Terse, readable, and maintainablethat's the kind of code you get with Boost.Lambda. Skip std::plus, std::minus,
std::multiplies, std::divides, and std::modulus; your code is always better with Boost.Lambda.

 Writing Readable Predicates

 Many of the algorithms in the Standard Library come in a version that accepts a unary or binary predicate. These
predicates are free functions of function objects, but of course, a lambda expression also fits the bill. For predicates
that are used often, it makes perfect sense to define function objects, but frequently, they are used once or twice and
then never looked at again. In such cases, a lambda expression is a superior choice, both because the code becomes
easier to understand (all functionality resides at the same location), and because the code isn't cluttered with function
objects that are rarely used. As a concrete example, consider finding an element with a specific value in a container. If
operator== is defined for the type, it's easy to use the algorithm find directly, but what if another criteria for the search
is to be used? Given the type search_for_me in the following, how would you use find to search for the first element
where the member function a returns "apple"?

#include <iostream>

#include <algorithm>

#include <vector>

#include <string>

class search_for_me {

  std::string a_;

  std::string b_;

public:

  search_for_me() {}

  search_for_me(const std::string& a,const std::string& b)

    : a_(a),b_(b) {}

  std::string a() const {

    return a_;

  }

  std::string b() const {

    return b_;

  }

};

int main() {

  std::vector<search_for_me> vec;

  vec.push_back(search_for_me("apple","banana"));

  vec.push_back(search_for_me("orange","mango"));

  std::vector<search_for_me>::iterator it=

    std::find_if(vec.begin(),vec.end(),???);

  if (it!=vec.end())

    std::cout << it->a() << '\n';

}

First of all, note that we need to use find_if,[5] but how should the predicate marked with ??? in the preceding code
be defined? Here's one way: a function object that implements the logic for the predicate.

[5] find uses operator==; find_if requires an additional predicate function (or function object).

class a_finder {

  std::string val_;

public:

  a_finder() {}

  a_finder(const std::string& val) : val_(val) {}

  bool operator()(const search_for_me& s) const {

    return s.a()==val_;

  }

};

This function object can be used like so:

std::vector<search_for_me>::iterator it=

  std::find_if(vec.begin(),vec.end(),a_finder("apple"));

That's fine, but two minutes (or days) later, we'll want another function object, this time one that tests the member
function b. And so on…this sort of thing quickly becomes tedious. As you've no doubt guessed, this is another
excellent case for lambda expressions; we need the flexibility of creating the predicate directly where and when it's
needed. The preceding find_if could have been written like this.

std::vector<search_for_me>::iterator it=

  std::find_if(vec.begin(),vec.end(),

    bind(&search_for_me::a,_1)=="apple");

We bind to the member function a, and we test it for equality with "apple" and that's our unary predicate in full,
defined right where it's used. But wait, as they say, there's more. When dealing with numeric types, we have the full
range of arithmetic operators, comparisons, and logical operations to choose from. This means that even complex
predicates are straightforward to define. Read the following code carefully, and see how well the predicates are
expressed.

#include <iostream>

#include <algorithm>

#include <vector>

#include <string>

#include "boost/lambda/lambda.hpp"

int main() {

  using namespace boost::lambda;

  std::vector<int> vec1;

  vec1.push_back(2);

  vec1.push_back(3);

  vec1.push_back(5);

  vec1.push_back(7);

  vec1.push_back(11);

  std::vector<int> vec2;

  vec2.push_back(7);

  vec2.push_back(4);

  vec2.push_back(2);

  vec2.push_back(3);

  vec2.push_back(1);

  std::cout << *std::find_if(vec1.begin(),vec1.end(),

    (_1>=3 && _1<5) || _1<1) << '\n';

  std::cout << *std::find_if(vec2.begin(),vec2.end(),

    _1>=4 && _1<10) << '\n';

  std::cout << *std::find_if(vec1.begin(),vec1.end(),

    _1==4 || _1==5) << '\n';

  std::cout << *std::find_if(vec2.begin(),vec2.end(),

    _1!=7 && _1<10) << '\n';

  std::cout << *std::find_if(vec1.begin(),vec1.end(),

    !(_1%3)) << '\n';

  std::cout << *std::find_if(vec2.begin(),vec2.end(),

    _1/2<3) << '\n';

}

As you can see, creating such predicates is as easy as writing down the logic in the first place. This is one of my
favorite uses for lambda expressions, because they can be understood by just about anyone. It's inevitable that we
sometimes need to choose other mechanisms than lambda expressions simply because of the competence profiles of
those who must understand the code; but here, there's nothing but added value.

 Make Your Function Objects Play Nicely with Boost.Lambda

 Not all expressions are suitable as lambda expressionscomplex expressions are better suited for regular function
objects, and expressions that are reused as-is many times should also be made first-class citizens of your code base.
They should be collected in a library of reusable function objects. But, you'll likely want to use these function objects
in lambda expressions, too, and you'll want them to play nicely with Lambda; not all function objects do. The problem
is that the return type of function objects cannot be deduced the way ordinary functions can; this is an inherent
limitation of the language. However, there is a well-defined way for providing this important information to the
Lambda library, which in turn makes bind expressions much cleaner. To give an example of the problem, consider the
following function object:

template <typename T> class add_prev {

  T prev_;

public:

  T operator()(T t) {

    prev_+=t;

    return prev_;

  }

};

Given such a function object, a lambda expression cannot deduce the return type, so the following example doesn't
compile.

#include <iostream>

#include <algorithm>

#include <vector>

#include "boost/lambda/lambda.hpp"

#include "boost/lambda/bind.hpp"

int main() {

  using namespace boost::lambda;

  std::vector<int> vec;

  vec.push_back(5);

  vec.push_back(8);

  vec.push_back(2);

  vec.push_back(1);

  add_prev<int> ap;

  std::transform(

    vec.begin(),

    vec.end(),

    vec.begin(),

    bind(var(ap),_1));

}

The problem is the call to transform.

std::transform(vec.begin(),vec.end(),vec.begin(),bind(var(ap),_1));

When the binder is instantiated, the mechanism for return type deduction kicks in…and fails. Thus, the program does
not compile, and you must explicitly tell bind the return type, like so:

std::transform(vec.begin(),vec.end(),vec.begin(),

  bind<int>(var(ap),_1));

This is a shorthand notation for the general form of explicitly setting the return types for lambda expression, and it's the
equivalent of this code.

std::transform(vec.begin(),vec.end(),vec.begin(),

  ret<int>(bind<int>(var(ap),_1)));

This problem isn't new; it's virtually the same that applies for function objects used by the Standard Library algorithms.
There, the solution is to add typedefs that state the return type and argument type(s) of the function objects. The
Standard Library even provides helper classes for accomplishing this, through the class templates unary_function and
binary_functionour example class add_prev could become a compliant function object by either defining the required
typedefs (argument_type and result_type for unary function objects, first_argument_type, second_argument_type, and
result_type for binary function objects), or inheriting from unary_function/binary_function.

template <typename T> class add_prev : public std::unary_function<T,T>

Is this good enough for lambda expressions, too? Can we simply reuse this scheme, and thus our existing function
objects, too? Alas, the answer is no. There is a problem with this typedef approach: What happens when the result
type or the argument type(s) is dependent on a template parameter to a parameterized function call operator? Or,
when there are several overloaded function call operators? Had there been language support for template typedefs,
much of the problem would be solved, but currently, that's not the case. That's why Boost.Lambda requires a
different approach, through a nested parameterized class called sig. To enable the return type deduction to work with
add_prev, we must define a nested type sig like this:

template <typename T> class add_prev :

  public std::unary_function<T,T> {

  T prev_;

public:

  template <typename Args> class sig {

  public:

    typedef T type;

 };

// Rest of definition

The template parameter Args is actually a tuple containing the function object (first element) and the types of the
arguments to the function call operator. In our case, we have no need for this information, as the return type and the
argument type are always T. Using this improved version of add_prev, there's no need to short-circuit the return type
deduction in a lambda expression, so our original version of the code now compiles cleanly.

std::transform(vec.begin(),vec.end(),vec.begin(),bind(var(ap),_1));

To see how the tuple in the template parameter to sig works, consider another function object with two function call
operators, one version accepting an int argument, the other accepting a reference to const std::string. The problem that
we need to solve can be expressed as, "if the second element of the tuple passed to the sig template is of type int, set
the return type to std::string; if the second element of the tuple passed to the sig template is of type std::string, set the
return type to double." To do this, we'll add another class template that we can specialize and then use in
add_prev::sig.

template <typename T> class sig_helper {};

// The version for the overload on int

template<> class sig_helper<int> {

public:

  typedef std::string type;

};

// The version for the overload on std::string

template<> class sig_helper<std::string> {

public:

  typedef double type;

};

// The function object

class some_function_object {

  template <typename Args> class sig {

    typedef typename boost::tuples::element<1,Args>::type

      cv_first_argument_type;

    typedef typename

      boost::remove_cv<cv_first_argument_type>::type

      first_argument_type;

    public:

    // The first argument helps us decide the correct version

    typedef typename

      sig_helper<first_argument_type>::type type;

};

  std::string operator()(int i) const {

    std::cout << i << '\n';

    return "Hello!";

  }

  double operator()(const std::string& s) const {

    std::cout << s << '\n';

    return 3.14159265353;

  }

};

There are two important parts to study herefirst, the helper class sig_helper, which is class parameterized on a type T.
This type is either int or std::string, depending on which of the overloaded versions of the function call operator is
requested. By fully specializing this template, the correct typedef, type, is defined. The next interesting part is the sig
class, where the first argument type (the second element of the tuple) is retrieved, any const or volatile qualifiers are
removed, and the resulting type is used to instantiate the correct version of the sig_helper class, which has the correct
typedef type. This is a rather complex (but necessary!) way of defining the return types for our classes, but most of
the time, there's only one version of the function call operator; and then it's a trivial task to correctly add the nested sig
class.

 It's important that our function objects work without hassle in lambda expressions, and defining the nested sig class
where it's needed is definitely a good idea; it helps a lot.

 Control Structures in Lambda Expressions

 We have seen that powerful lambda expressions can be created with ease, but many programming problems require
that we be able to express conditions, which we do in C++ using if-then-else, for, while, and so on. There are lambda
versions of all C++ control structures in Boost.Lambda. To use the selection statements, if and switch, include the files
"boost/lambda/if.hpp" and "boost/lambda/switch.hpp", respectively. For the iteration statements, while, do, and for,
include "boost/lambda/loops.hpp". It's not possible to overload keywords, so the syntax is slightly different than what
you're used to, but the correlation is obvious. As a first example, we'll see how to create a simple if-then-else
construct in a lambda expression. The form is if_then_else(condition, then-statements, else-statements). There is also
another syntactic form, which has the form if_(condition)[then-statements].else_[else-statements].

#include <iostream>

#include <algorithm>

#include <vector>

#include <string>

#include "boost/lambda/lambda.hpp"

#include "boost/lambda/bind.hpp"

#include "boost/lambda/if.hpp"

int main() {

  using namespace boost::lambda;

  std::vector<std::string> vec;

  vec.push_back("Lambda");

  vec.push_back("expressions");

  vec.push_back("really");

  vec.push_back("rock");

  std::for_each(vec.begin(),vec.end(),if_then_else(

    bind(&std::string::size,_1)<=6u,

      std::cout << _1 << '\n',

      std::cout << constant("Skip.\n")));

  std::for_each(vec.begin(),vec.end(),

    if_(bind(&std::string::size,_1)<=6u) [

      std::cout << _1 << '\n'

    ]

    .else_[

      std::cout << constant("Skip.\n")

    ] );

}

If you've read the whole chapter up to now, you probably find the preceding example quite readable; if you're
jumping right in, this is probably a scary read. Control structures immediately add to the complexity of reading lambda
expressions, so it does take a little longer to get used to. After you get the hang of it, it comes naturally (the same goes
for writing them!). Deciding which syntactic form to use is merely a matter of taste; they do exactly the same thing.

 In the preceding example, we have a vector of strings and, if their size is less than or equal to 6, they are printed to
std::cout; otherwise, the string "Skip" is printed. There are a few things worth noting in the if_then_else expression.

if_then_else(

  bind(&std::string::size,_1)<=6u,

    std::cout << _1 << '\n',

    std::cout << constant("Skip.\n")));

First, the condition is a predicate, and it must be a lambda expression! Second, the then-statement must be a lambda
expression! Third, the else-statement must beget readya lambda expression! The first two come naturally in this case,
but it's easy to forget the constant to make the string literal ("Skip\n") a lambda expression. The observant reader
notices that the example uses 6u, and not simply 6, to make sure that the comparison is performed using two unsigned
types. The reason for this is that we're dealing with deeply nested templates, which means that when a lambda
expression like this happens to trigger a compiler warning, the output is really, really long-winded. Try removing the u
in the example and see how your compiler likes it! You should see a warning about comparing signed and unsigned
types because std::string::size returns an unsigned type.

 The return type of the control structures is void, with the exception of if_then_else_return, which calls the conditional
operator. Let's take a closer look at the whole range of control structures, starting with if and switch. Remember that
to use if-constructs, "boost/lambda/if.hpp" must be included. For switch, "boost/lambda/switch.hpp" must be included.
The following examples all assume that the declarations in the namespace boost::lambda have been brought to the
current scope through using declarations or a using directive.

(if_then(_1<5,

 std::cout << constant("Less than 5")))(make_const(3));

The if_then function starts with a condition, followed by a then-part; in the preceding code, if the argument passed to
the lambda function is less than 5 (_1<5), "Less than 5" is printed to std::cout. You'll note that when we invoke this
lambda expression with the numeric value 3, we cannot pass it directly, like so.

(if_then(_1<5,std::cout << constant("Less than 5")))(3);

This would result in a compiler error, because 3 is an int, and an rvalue of type int (or any built-in type for that matter)
cannot be const qualified. Thus, one has to use the utility make_const here, which does nothing more than return a
reference to const of its argument. Another option is to wrap the whole lambda expression in a call to
const_parameters, like so:

(const_parameters(

  if_then(_1<5,std::cout << constant("Less than 5"))))(3);

const_parameters is useful to avoid having to wrap each of several arguments with make_const. Note that when using
this function, all of the parameters to the lambda expression are considered (references to) const.

 Now look at how if_then looks using the alternative syntax.

(if_(_1<5)

  [std::cout << constant("Less than 5")])(make_const(3));

This notation has a greater resemblance to the C++ keyword, but it does exactly the same thing as if_then. The
function if_ (note the trailing underscore) is followed by the parenthesized condition, which in turn is followed by the
then-statement. Again, choosing between these syntax alternatives is simply a matter of taste.

 Now, let's take a look at the if-then-else constructs; they're very similar to if_then.

(if_then_else(

  _1==0,

    std::cout << constant("Nothing"),

    std::cout << _1))(make_const(0));

(if_(_1==0)

  [std::cout << constant("Nothing")].

    else_[std::cout << _1])(make_const(0));

When adding the else-part using the alternative syntax, note that a period precedes the else_.

 The return type of these lambda expressions is void, but there is also a version that returns a value, by using the
conditional operator. There are some non-trivial rules for the types of such expressions (I won't go through them here,
but see the online documentation for Boost.Lambda or the C++ Standard [§5.16] for the nitty-gritty details). Here's
an example, where the return value is assigned to a variable, similar to how you would use the conditional operator for
ordinary expressions.

int i;

int value=12;

var(i)=(if_then_else_return

  (_1>=10,constant(10),_1))(value);

There is no version of the alternative syntax for this construct. That's it for if-then-else, which brings us to the
switch-statement, which differs somewhat from the standard C++ switch.

(switch_statement

  _1,

  case_statement<0>

    (var(std::cout) << "Nothing"),

  case_statement<1>

    (std::cout << constant("A little")),

  default_statement

    (std::cout << _1))

  )(make_const(100));

The call to switch_statement starts with the condition variable, which in our case is _1, the first argument to the
lambda expression. This is followed by (up to nine) case constants, which have labels of integer type; these must be
constant integral expressions. We provide two such constants, for 0 and 1 (note that they could have any value
acceptable for integral types). Finally, we add the optional default_statement, which is executed if the evaluation of _1
doesn't match any of the other constants. Note that a break-statement is implicitly added to each case constant, so
there's no need to explicitly exit from a switch (which is a Good Thing for those maintaining the code[6]).

[6] Spokesmen of fall-through case-statements; please excuse this blasphemy.

 Now let's examine the iteration statements, for, while, and do. To use any of these, you must include the header
"boost/lambda/loops.hpp" first. Boost.Lambda's equivalent of C++'s while is while_loop.

int val1=1;

int val2=4;

(while_loop(_1<_2,

  (++_1,std::cout << constant("Inc...\n"))))(val1,val2);

A while_loop statement is executed until the condition becomes false; here the condition is _1<_2, which is followed
by the body of the loop, the expression ++_1,std::cout << constant("Inc...\n"). Of course, the condition and the loop
body must, themselves, be valid lambda expressions. The alternative syntax is closer to the C++ syntax, just as was
the case with if_.

 int val1=1;

int val2=4;

(while_(_1<_2)

  [++_1,std::cout << constant("Inc...\n")])(val1,val2);

The form is while_(condition)[substatement], and it does save a couple of keystrokes…but personally I find the
function call syntax easier to read for while, although I (irrationally) find if_ easier to parse than if_then(...). Go figure.
do_while_loop is naturally very similar to while_loop, but the substatement is always executed at least once (unlike
while, the condition is evaluated after each execution).

 (do_while_loop(_1!=12,std::cout <<

  constant("I'll run once")))(make_const(12));

The corresponding alternative syntax is

(do_[std::cout <<

constant("I'll run once")].while_(_1!=12))(make_const(12));

Finally, there's the for loop equivalent, for_loop. In the following example, a named, delayed variable is used to make
the lambda expression more readable. We've come across delayed variables before through the use of constant and
var. Delayed variables with names is a way of avoiding having to type constant or var for constants and variables,
respectively. Instead, they're given a name of your choice with which they can later be referred. The general form for
the loop is for_loop(init-statement, condition, expression, statement)that is, it's like a regular for statement but the
statement is part of the function (arguments).

int val1=0;

var_type<int>::type counter(var(val1));

(for_loop(counter=0,counter<_1,++counter,var(std::cout)

  << "counter is " << counter << "\n"))(make_const(4));

With the alternative syntax, statement is separated from initialization, condition, and expression.

 (for_(counter=0,counter<_1,++counter)[var(std::cout)

<< "counter is " << counter << "\n"])(make_const(4));

The example initializes the delayed variable counter to 0, the condition is counter<_1, and the expression is
++counter.

 This concludes the section on control structures. For most problems that I've encountered and solved with lambda
expressions, I can actually do without them, but sometimes, they are real lifesavers. Regarding the choice of syntactic
version, the best way to figure out which to use is probably to experiment using both, and get a feel for which version
suits your needs the best. It should be noted that when using switch and the loop constructs, the lambda expressions
quickly become large enough to make them hard to follow if you're not fairly accustomed to using the library. Some
care should thus be taken, and if an expression seems too hard to parse for your fellow programmers, consider a
separate function object instead. (Or have them practice using Boost.Lambda more!)

 Casting in Lambda Expressions

 There are four special "cast operators"[7] that allow casting of types in lambda expressions: ll_dynamic_cast,
ll_static_cast, ll_reinterpret_cast, and ll_const_cast. The names are different from the corresponding C++ keywords
because these cannot be overloaded. To use these casts, include the header "boost/lambda/casts.hpp". These
functions work like their C++ cast operator equivalents; they take an explicit template argument, which is the type to
cast to, and an implicit template argument, which is the source type. In our first example, we will use two classes,
imaginatively named base and derived. We'll create two pointers to base, one of them will point to an instance of
base, and the other to an instance of derived. Using ll_dynamic_cast, we will try to extract a derived* from both of
these pointers.

[7] Technically, they are template functions returning function objects.

#include <iostream>

#include "boost/lambda/lambda.hpp"

#include "boost/lambda/casts.hpp"

#include "boost/lambda/if.hpp"

#include "boost/lambda/bind.hpp"

class base {

public:

  virtual ~base() {}

  void do_stuff() const {

    std::cout << "void base::do_stuff() const\n";

  }

};

class derived : public base {

public:

  void do_more_stuff() const {

    std::cout << "void derived::do_more_stuff() const\n";

  }

};

int main() {

  using namespace boost::lambda;

  base* p1=new base;

  base* p2=new derived;

  derived* pd=0;

  (if_(var(pd)=ll_dynamic_cast<derived*>(_1))

    [bind(&derived::do_more_stuff,var(pd))].

      else_[bind(&base::do_stuff,*_1)])(p1);

  (if_(var(pd)=ll_dynamic_cast<derived*>(_1))

    [bind(&derived::do_more_stuff,var(pd))].

      else_[bind(&base::do_stuff,*_1)])(p2);

}

In main, the first thing we do is create p1 and p2; p1 points to a base, whereas p2 points to an instance of derived. In
the first lambda expression, the assigned pd becomes the condition; it is implicitly converted to bool, and if it yields
TRue, then-part is evaluated. Here, we bind to the member function do_more_stuff. If the ll_dynamic_cast fails, the
delayed variable representing pd will be 0, and the else-part is executed. So, in our example, the first invocation of the
lambda expression should call do_stuff on base, and the second should call do_more_stuff in derived, which is
confirmed when running this program.

void base::do_stuff() const

void derived::do_more_stuff() const

Note that in the example, the argument _1 is dereferenced, but this is not really necessary; this is done implicitly if
needed. If an argument to a bind expression must always be a pointer type, you can enforce that by dereferencing it
yourself. Otherwise, leave that chore to Boost.Lambda.

 ll_static_cast is really useful to avoid warnings. Don't use it to suppress important information, but to reduce noise. In
a previous example, we created a bind expression that evaluated the length of a std::string (using std::string::size) and
compared the length to another integral value. The return type of std::string::size is an unsigned type, and passing a
signed integer type to the comparison (most likely) produces a warning from the compiler that signed and unsigned
comparisons are risky business. However, because this happens in a lambda expression, the compiler dutifully traces
the root of the problem by telling you which part of a nested template invocation is responsible for this horrible crime.
The result is a very long warning message, which probably hides any other issues because of the low signal-to-noise
ratio. In generic code, this can sometimes be an issue, because the types that are used are not within our control.
Thus, after evaluating the potential problem, you often find it beneficial to suppress unwanted warnings using
ll_static_cast. The following example includes code that exhibits this behavior.

#include <iostream>

#include <string>

#include <algorithm>

#include "boost/lambda/lambda.hpp"

#include "boost/lambda/casts.hpp"

#include "boost/lambda/if.hpp"

#include "boost/lambda/bind.hpp"

template <typename String,typename Integral>

  void is_it_long(const String& s,const Integral& i) {

    using namespace boost::lambda;

    (if_then_else(bind(&String::size,_1)<_2,

      var(std::cout) << "Quite short...\n",

      std::cout << constant("Quite long...\n")))(s,i);

  }

int main() {

  std::string s="Is this string long?";

  is_it_long(s,4u);

  is_it_long(s,4);

}

The parameterized function is_it_long (and please try to ignore that this is a slightly more contrived example than
usual) invokes a lambda expression using a reference to const variable of type Integral. Now, whether this type is
signed or not is beyond our control, so chances are good that a user will inadvertently trigger a very verbose warning,
which is exactly what the example illustrates, because one call to is_it_long uses a signed integer.

is_it_long(s,4);

The only way to make sure that the user doesn't accidentally cause this to happen (besides requiring only unsigned
types) is to make the argument an unsigned integer type, regardless of what it originally is. This is a job for
ll_static_cast, so we change the function is_it_long like so:

template <typename String,typename Integral>

  void is_it_long(const String& s,const Integral& i) {

    using namespace boost::lambda;

    (if_then_else(bind(&String::size,_1)<

      ll_static_cast<typename String::size_type>(_2),

        var(std::cout) << "Quite short...\n",

        std::cout << constant("Quite long...\n")))(s,i);

}

This situation does not arise often (at least I haven't seen it many times), but it does happen, and this solution works.
Using ll_const_cast and ll_reinterpret_cast is similar to what we've seen here, so this example ends the cast functions.
Use them wisely, and don't use ll_reinterpret_cast at all, without extremely compelling reasons (I can't think of any).
It's mainly there for symmetry; if you need it, chances are good that you've done something that you shouldn't have.

 Constructing and Destructing

 When the need to create or destroy objects arises in lambda expressions, some special handling and syntax is
required. To begin with, it's not possible to take the address of constructors or destructors, and it's thus not possible
to use a standard bind expression for them. Moreover, operators new and delete have fixed return types, so they
cannot return lambda expressions for arbitrary types. If you need to create or destroy objects in lambda expressions,
make sure to include the header "boost/lambda/construct.hpp", which contains the templates constructor, destructor,
new_ptr, new_array, delete_ptr, and delete_array. We'll take a look at how to use them, and focus on constructor
and new_ptr, which are the most commonly used of these constructs.

 For our first example, consider a container that holds smart pointers as its elements, and we'll want to reset the
contents of smart pointers in our lambda expression. This typically involves a call to operator new; the exception to
that rule would be if some custom allocation scheme were used, or a factory method of some kind. We will need to
use new_ptr to do that, and if you want or need to, it's often possible to also use constructor in an assignment
expression. Let's do both. We'll set the table by defining two classes, base and derived, and a std::map of
boost::shared_ptr<base>s indexed by std::strings. Take a deep breath before reading the lambda expressions in this
example; they are two of the most complex lambda expressions you'll see in this chapter. Although complex,
understanding what they do should be reasonably straightforward. Just take your time.

#include <iostream>

#include <map>

#include <string>

#include <algorithm>

#include "boost/lambda/lambda.hpp"

#include "boost/lambda/construct.hpp"

#include "boost/lambda/bind.hpp"

#include "boost/lambda/if.hpp"

#include "boost/lambda/casts.hpp"

#include "boost/shared_ptr.hpp"

class base {

public:

  virtual ~base() {}

};

class derived : public base {

};

int main() {

  using namespace boost::lambda;

  typedef boost::shared_ptr<base> ptr_type;

  typedef std::map<std::string,ptr_type> map_type;

  map_type m;

  m["An object"]=ptr_type(new base);

  m["Another object"]=ptr_type();

  m["Yet another object"]=ptr_type(new base);

  std::for_each(m.begin(),m.end(),

    if_then_else(!bind(&ptr_type::get,

      bind(&map_type::value_type::second,_1)),

       (bind(&map_type::value_type::second,_1)=

         bind(constructor<ptr_type>(),bind(new_ptr<derived>())),

         var(std::cout) << "Created a new derived for \"" <<

           bind(&map_type::value_type::first,_1) << "\".\n"),

             var(std::cout) << "\"" <<

               bind(&map_type::value_type::first,_1)

                 << "\" already has a valid pointer.\n"));

  m["Beware, this is slightly tricky"]=ptr_type();

  std::cout << "\nHere we go again...\n";

  std::for_each(m.begin(),m.end(),

    if_then_else(!bind(&map_type::value_type::second,_1),

      ((bind(static_cast<void (ptr_type::*)(base*)>

        (&ptr_type::reset<base>),

       bind(&map_type::value_type::second,_1),

         bind(new_ptr<base>()))),

           var(std::cout) << "Created a new derived for \""

             << bind(&map_type::value_type::first,_1)

               << "\".\n"),

                 var(std::cout) << "\"" <<

                   bind(&map_type::value_type::first,_1)

                     << "\" already has a valid pointer.\n"));

}

You got all of that, right? Just in case there was any confusion, I'll explain what's happening in this example. First, note
that the two lambda expressions do essentially the same thing. They set a valid pointer for any element in the std::map
that is currently null. Here's the output when running the program:

"An object" already has a valid pointer.

Created a new derived for "Another object".

"Yet another object" already has a valid pointer.

"An object" already has a valid pointer.

"Another object" already has a valid pointer.

"Yet another object" already has a valid pointer.

Here we go again...

"An object" already has a valid pointer.

"Another object" already has a valid pointer.

Created a new derived for "Beware, this is slightly tricky".

"Yet another object" already has a valid pointer.

The output shows that we managed to put valid objects into each element of the map, but how?

 The expressions do a similar task, but each takes a different tack. Starting with the first one, let's dissect the lambda
expression to see how it works. The first part is the condition, of course, which is quite trivial:[8]

[8] It can be made even more trivial, as we shall soon see.

!bind(&ptr_type::get,bind(&map_type::value_type::second,_1))

Seeing it like this makes it a bit easier, right? Reading the expression starting with the innermost bind tells us that we're
binding to the member map_type::value_type::second (which is a ptr_type), and to that we bind the member function
ptr_type::get (which returns the shared_ptr's pointee), and to the whole expression, we apply the operator!. Because
a pointer is implicitly convertible to bool, that's a valid Boolean expression. That takes care of the condition, so we
move on to the then-part.

bind(&map_type::value_type::second,_1)=

  bind(constructor<ptr_type>(),

    bind(new_ptr<derived>())),

There are three bind expressions here, the first one (we start reading from the left here, because the expression
involves an assignment) extracts the member map_type::value_type::second, which is the smart pointer. This is the
value that we assign a new derived to. The second and third expressions are nested, so we read them from the inside
out. The innermost bind takes care of the default construction of an instance of derived on the heap, and to the result
we bind a constructor call to ptr_type (the smart pointer type), which is then assigned (using the usual notation for
assignment) to the very first bind expression. Then, we add another expression to this then-part, which simply prints
out a short message and the element's key.

var(std::cout) << "Created a new derived for \"" <<

          bind(&map_type::value_type::first,_1) << "\".\n")

Finally, we add the else-part of the statement, which prints out the key of the element and some text.

var(std::cout) << "\"" <<

  bind(&map_type::value_type::first,_1)

  << "\" already has a valid pointer.\n"));

When decomposing the expressions, it's clear that they're not really that complex, although looking at the whole thing
can be quite intimidating. It's important to indent and separate the code so that reading becomes intuitive. We can
write a similar expression for accomplishing our task, in a version that's quite different from this one but is much harder
to read, although it is slightly more efficient. The thing to note here is that there are often several ways of attacking the
problem of writing lambda expressions, just as is the case with other programming problems. It makes sense to apply
some extra thought before writing, because the choices substantially affect the readability of the end result. For
comparison, here's the other version I mentioned:

std::for_each(m.begin(),m.end(),

  if_then_else(!bind(&map_type::value_type::second,_1),

    ((bind(static_cast<void (ptr_type::*)(base*)>

      (&ptr_type::reset<base>),

    bind(&map_type::value_type::second,_1),

      bind(new_ptr<derived>()))),

        var(std::cout) << "Created a new derived for \"" <<

          bind(&map_type::value_type::first,_1) << "\".\n"),

            var(std::cout) << "\"" <<

              bind(&map_type::value_type::first,_1)

                << "\" already has a valid pointer.\n"));

This is not as nice, because the code is cluttered with casts and complicated nested binds, and we move away from
the actual logic more than the previous version did. To understand it, let's again decompose the expressions to their
constituent parts. First, we have the condition, which is actually simplified (nothing else is in this expression!); we
utilize our knowledge of shared_ptr, which tells us that there is an implicit conversion to bool available. We can thus
eliminate the bind to the member function get that we used in the previous expression.

!bind(&map_type::value_type::second,_1)

That condition works with the original expression, too. The next part is this:

bind(static_cast<void (ptr_type::*)(base*)>

  (&ptr_type::reset<base>),

bind(&map_type::value_type::second,_1),

     bind(new_ptr<derived>()))

This is arguably too hard to parse, so we should have avoided it in the first place. Rather than using assignment, we go
directly for the member function reset, which is not only parameterized but also overloaded. We thus need to perform
a static_cast to tell the compiler which version of reset we are interested in. In this case, it is mainly the static_cast that
complicates the reading of the expression, but again starting from the innermost expression, we can work through it.
We bind a call to operator new, creating an instance of derived, and to the result we bind the smart pointer (through
the member map_type::value_type::second), to which we bind the shared_ptr member function reset. This results in a
call to reset for the smart pointer in the element, with the argument being a newly constructed instance of derived.
Although we've done basically the same thing as in the previous example, this version is much harder to understand.

 Just remember that there can often be alternatives that lead to lambda expressions that are easier or harder to read
and understand, so consider the alternatives and choose the easier forms when possible. It is imperative to treat the
power that this library offers, and the effect it can have on your fellow programmers, with respect.

 Throwing and Catching Exceptions

 We have reached the final section of this chapter, which discusses exception handling in lambda expressions. If your
reaction to this topic is to wonder exactly what justifies exception handling code in a lambda expression, that matches
my first thoughts fairly well. However, it's not as far fetched as you might think. Surely you have written code that
performs local exception handling when processing data in a loop? Well, handwritten loops can be avoided through
usage of the Boost.Lambda library, so moving that exception handling into lambda expressions is quite natural.

 To use the exception handling facilities of Boost.Lambda, include "boost/lambda/exceptions.hpp". Let's reuse the
classes base and derived that we saw earlier, and perform dynamic_casts almost like we did beforebut this time we
will perform casts to references rather than pointers, which means that upon failure, dynamic_cast will throw an
exception. This makes the example more straightforward than what we did before, because we don't need to use an if
statement.

#include <iostream>

#include "boost/lambda/lambda.hpp"

#include "boost/lambda/casts.hpp"

#include "boost/lambda/bind.hpp"

#include "boost/lambda/exceptions.hpp"

int main() {

  using namespace boost::lambda;

  base* p1=new base;

  base* p2=new derived;

  (try_catch(

    bind(&derived::do_more_stuff,ll_dynamic_cast<derived&>(*_1)),

      catch_exception<std::bad_cast>(bind(&base::do_stuff,_1))))(p1);

  (try_catch(

    bind(&derived::do_more_stuff,

      ll_dynamic_cast<derived&>(*_1)),

        catch_exception<std::bad_cast>(

          bind(&base::do_stuff,_1))))(p2);

}

These expressions reveal that you wrap an expression in a call to TRy_catch. The general form of try_catch is

try_catch(expression,
  catch_exception<T1>(expression),
  catch_exception<T2>(expression,
  catch_all(expression))

In the example code, the expressions use dynamic_casts to derived&. The first cast fails because p1 points to an
instance of base; the second cast succeeds, because p2 points to an instance of derived. Note the dereferencing of
the placeholders (*_1). This is required because we are passing pointers as arguments to the expressions, but the
dynamic_casts we're interested in expect objects or references. If you need the try_catch to handle several types of
exceptions, be sure to put the most specialized types first, just as with regular exception handling code.[9]

[9] Otherwise, a more general type will match an exception and not find the handler for the more specific type.
Consult your favorite C++ book for more details on this.

 If we want to access the actual exception that was caught, we can do so using a special placeholder, _e. Of course,
one cannot do that in catch_all, just as there is no exception object in a catch (...). Continuing the preceding example,
we can print the reason for the failed dynamic_cast like so:

try_catch(

  bind(&derived::do_more_stuff,ll_dynamic_cast<derived&>(*_1)),

  catch_exception<std::bad_cast>

    (std::cout << bind(&std::exception::what,_e))))(p1);

When dealing with an exception type derived from std::exceptiona common caseyou can bind to the virtual member
function what, as shown here.

 Sometimes, however, you don't want to catch an exception, but rather throw one. This is done via the function
throw_exception. Because you need to create an exception object to throw, you'll typically use constructor to throw
an exception from inside a lambda expression. The following example defines an exception class, some_exception,
which inherits publicly from std::exception, and creates and throws one in a lambda expression if the argument to the
expression is true.

#include <iostream>

#include <exception>

#include "boost/lambda/lambda.hpp"

#include "boost/lambda/exceptions.hpp"

#include "boost/lambda/if.hpp"

#include "boost/lambda/construct.hpp"

#include "boost/lambda/bind.hpp"

class some_exception : public std::exception {

  std::string what_;

public:

  some_exception(const char* what) : what_(what) {}

  virtual const char* what() const throw() {

    return what_.c_str();

  }

  virtual ~some_exception() throw() {}

};

int main() {

  using namespace boost::lambda;

  try {

    std::cout << "Throw an exception here.\n";

    (if_then(_1==true,throw_exception(

      bind(constructor<some_exception>(),

        constant("Somewhere, something went \

        terribly wrong.")))))(make_const(true));

    std::cout << "We'll never get here!\n";

  }

  catch(some_exception& e) {

    std::cout << "Caught exception, \"" << e.what() << "\"\n";

  }

}

Running this program yields the following output:

Throw an exception here.

Caught exception, "Somewhere, something went terribly wrong."

The most interesting part is where the exception is thrown.

throw_exception(

  bind(constructor<some_exception>(),

    constant("Somewhere, something went \

      terribly wrong."))

The argument to throw_exception is a lambda expression. In this case, it is created by binding a call to the
some_exception constructor, to which we pass the what argument, a string literal.

 That's all there is to exception handling in Boost.Lambda. As always, remember to treat these tools with care and
respect, as they can make life easier or harder depending on how well and judiciously you utilize them.[10] Throwing
and handling exceptions should not be common in your lambda expressions, but it's necessary and reasonable from
time to time.

[10] Beware the tendency to fulfill the old adage, "When all you have is a hammer, everything looks like a nail."





Lambda Summary
 Use Lambda when



 You would otherwise create a simple function object


You need to tweak argument order or arity for function calls


You want to create standard-conforming function objects on-the-fly


You need flexible and readable predicates

 The preceding reasons are just some of the cases where using this library makes perfect sense. Although the most
common uses arise together with Standard Library algorithms, that's at least in part due to the fact that such designs
still aren't very common in other libraries (the Boost libraries notwithstanding). Although the notion of algorithmic
configuration through function objects needs no further proof of its usefulness, there is a long way to go before we
reach conclusive insights into what domains clearly can benefit from such designs. Just by thinking about potential uses
of this library is a sure way to improve your current designs.

 Boost.Lambda is one of my favorite libraries, mainly because it offers so much accessible functionality that isn't
otherwise provided by the language. As the STL made its way into the hearts of programmers all over the world,
there was still something missing. To work efficiently with the algorithms, something more than function objects was
required. Such was the impetus for Boost.Lambda, with its plethora of features that enable a truly concise
programming style. There are many areas where lambda expressions are usable, but there is still much to be explored.
This is to some degree functional programming in C++, which is a paradigm yet to be explored in full. This
introduction to the Lambda library can empower you to continue that exploration. It's only fair to state that the syntax
sometimes can be a bit clumsy compared to "real" functional programming languages, and that it does take some time
for new users to get accustomed to it. But, likewise, it's fair to say that there is great value for any C++ programmer in
this library! I hope it becomes one of your favorite libraries, too.

 Many thanks to Jaakko Järvi and Gary Powell, the authors of this library and true pioneers of functional programming
in C++!
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How Does the Function Library Improve Your Programs?


 Stores function pointers and function objects for subsequent invocation

 The need to store functions and function objects is common in designs with callbacks, and where functions or classes
are configured with custom functionality through either function pointers or function objects. Traditionally, function
pointers have been used to accommodate the need for both callbacks and delayed functions. However, using only
function pointers is too limiting, and what would be better is a generalized mechanism that defines the signature of the
function to be stored, and leaves it up to the caller to decide which type of function-like entity (function pointer or
function object) should be provided. It would then be possible to use anything that behaves like a functionfor example,
the result of using Boost.Bind and Boost.Lambda. This, in turn, means that it is possible to add state to such stored
functions (because function objects are classes). This generalization is what Boost.Function offers. The library is used
to store, and subsequently invoke, functions or function objects.



How Does Function Fit with the Standard Library?
 The library provides functionality that does not currently exist in the Standard Library. Generalized callbacks are a
natural part of virtually all frameworks decoupling the presentation layer from the business logic, and the uses are
plentiful. As there is no support in the C++ Standard Library for storing function pointers and function objects for later
invocation, this is an important addition to the tools offered by the Standard Library. Also, the library is compatible
with the binders from the Standard Library (bind1st and bind2nd), as well as other binder libraries that extend the
aforementioned binders, such as Boost.Bind and Boost.Lambda.





Function

 Header: "boost/function.hpp"

 The header "function.hpp" includes prototypes for functions with 0 to 10 arguments. (This is implementation defined,
but 10 is the default limit for the current implementation.[1]) It is also possible to include only the header that
corresponds to the number of arguments you need to usethe files are named "function/functionN.hpp", where N is in
the range 0 to 10. There are two different interfaces for Boost.Function, one that is most appealing because it is
syntactically close to a function declaration (and doesn't require the signature to include the number of arguments), and
the other is appealing because it works with more compilers. Which to choose depends, at least in part, on the
compiler that you are using. If you can, use what we refer to as the preferred syntax. Throughout this chapter, both
forms will be used.

[1] Boost.Function can be configured to support up to 127 arguments.

 Declarations Using the Preferred Syntax

 A declaration of a function includes the signature and return type of the function or function object that the function is
to be compatible with. The type of the result and the arguments are all supplied as a single argument to the template.
For example, the declaration of a function that returns bool and accepts an argument of type int looks like this:

boost::function<bool (int)> f;

The argument list is supplied inside the parentheses, separated by commas, just like a function declaration. Thus,
declaring a function that returns nothing (void) and takes two arguments, of type int and double, looks like this:

boost::function<void (int,double)> f;

Declarations Using the Compatible Syntax

 The second way of declaring functions is to supply separate template type arguments for the return type and the
argument types for the function call. Also, there's a suffix for the name of the function class, which is an integer that
corresponds to the number of arguments the function will accept. For example, the declaration of a function that
returns bool and accepts an argument of type int looks like this:

boost::function1<bool,int> f;

The numbering is based on the number of arguments that the function acceptsin the preceding example, there is one
argument (int) and therefore function1 is needed. More arguments simply means supplying more template type
parameters to the template and changing the numeric suffix. A function that returns void and accepts two arguments of
type int and double looks like this:

boost::function2<void,int,double> f;

The library actually consists of a family of classes, each taking a different number of arguments. There is no need to
take this into account when including the header "function.hpp", but if including the numbered versions, you must
include the correct numbered header.

 The preferred syntax is easier to read and is analogous to declaring a function, so you should use it when you can.
Unfortunately, although the preferred syntax is perfectly legal C++ and easier to read, not all compilers support it as
yet. If your compiler is among those that cannot handle the preferred syntax, you need to use the alternative form. If
you need to write your code with maximum portability, you might also choose to use the alternative form. Let's take a
look at the most important parts of a function's interface.

 Members

function(); 

The default constructor creates an empty function object. If an empty function is invoked, it throws an exception of
type bad_function_call.

template <typename F> function(F g); 

This parameterized constructor accepts a compatible function objectthat is, a function or a function object that has a
signature with a return type that is the same as, or implicitly convertible to, that of the function being constructed, and
arguments the same as, or implicitly convertible to, that of the function being constructed. Note that another instance
of function can also be used for construction. If that is the case, and the function f is empty, the constructed function
will also be empty. This also applies to null function pointers and null pointers to membersthe resulting function is
empty.

template <typename F> function(reference_wrapper<F> g); 

This constructor is similar to the previous version, but takes its function object wrapped in a reference_wrapper,
which is used to avoid passing by value, and thus creating a copy of the function or function object. The requirements
on the function objects are that they be compatible with the signature of the function.

function& operator=(const function& g); 

The copy assignment operator stores a copy of g's stored function or function object; if g is empty, the function being
assigned to will also be empty.

template<typename F> function& operator=(F g); 

The parameterized assignment operator accepts a compatible function pointer or function object. Note that another
instance of function (with a different but compatible signature) can also be used for assignment. This also means that
the function can be empty after assignment, which is the case if g is another instance of function and is empty.
Assigning a null function pointer or a null pointer to member effectively empties the function.

bool empty() const;

This member returns a Boolean value that tells whether the function contains a function/function object or if it's empty.
It returns false if there is a targeted function or function object that can be invoked. Because a function can already be
tested in a Boolean context, or compared to 0, this member function may be deprecated in future versions of this
library, so you might want to avoid it.

void clear(); 

This member function clears the function, which means that it is no longer targeting a function or function object. If the
function is already empty, the call has no effect. After the call, the function is always empty. The preferred way to
make a function empty is to assign 0 to it; clear may be deprecated in a future release of this library.

operator safe_bool() const 

This conversion function returns an unspecified type (represented by safe_bool) that can be used in Boolean contexts.
If the function is empty, the returned value is false. If the function is storing a function pointer or function object, the
returned value is true. Note that using a type that is different from bool enables this conversion operator to be
completely safe and not interfere with overloading, while still providing the idiomatic use of testing an instance of
function directly in a Boolean context. It is also equivalent to the expression !!f, where f is an instance of function.

result_type operator()(Arg1 a1, Arg2 a2, ..., ArgN aN) const; 

The function call operator is how a function is invoked. You cannot invoke an empty function or it will throw a
bad_function_call exceptionthat is, !f.empty(), if (f), or if (!!f) yields true. The invocation results in calling the function
or function object in the function, and returns its result.







Usage
 To start using Boost.Function, include "boost/function.hpp", or any of the numbered versions, ranging from
"boost/function/function0.hpp" to "boost/function/function10.hpp". If you know the arity of the functions you want to
store in functions, it taxes the compiler less to include the exact headers that are needed. When including
"boost/function.hpp", the other headers are all included, too.

 The best way to think of a stored function is a normal function object that is responsible for wrapping another
function (or function object). It then makes perfect sense that this stored function can be invoked several times, and
not necessarily at the time when the function is created. When declaring functions, the most important part of the
declaration is the function signature. This is where you tell the function about the signature and return type of the
functions and/or function objects it will store. As we've seen, there are two ways to perform such declarations. Here's
a complete program that declares a boost::function that is capable of storing function-like entities that return bool (or a
type that is implicitly convertible to bool) and accept two arguments, the first convertible to int, and the second
convertible to double.

#include <iostream>

#include "boost/function.hpp"

bool some_func(int i,double d) {

  return i>d;

}

int main() {

  boost::function<bool (int,double)> f;

  f=&some_func;

  f(10,1.1);

}

When the function f is first created, it doesn't store any function. It is empty, which can be tested in a Boolean context
or with 0. If you try to invoke a function that doesn't store a function or function object, it throws an exception of the
type bad_function_call. To avoid that problem, we assign a pointer to some_func to f using normal assignment syntax.
That causes f to store the pointer to some_func. Finally, we invoke f (using the function call operator) with the
arguments 10 (an int) and 1.1 (a double). When invoking a function, one must supply exactly the number of arguments
the stored function or function object expects.

 The Basics of Callbacks

 Let's look at how we would have implemented a simple callback before we knew about Boost.Function, and then
convert the code to make use of function, and examine which advantages that brings forth. We will start with a class
that supports a simple form of callbackit can report changes to a value by calling whoever is interested in the new
value. The callback will be a traditional C-style callbackthat is, a free function. This callback could be used, for
example, for a GUI control that needs to inform observers that the user changed its value, without having any special
knowledge about the clients listening for that information. 

#include <iostream>

#include <vector>

#include <algorithm>

#include "boost/function.hpp"

void print_new_value(int i) {

  std::cout << 

    "The value has been updated and is now " << i << '\n';

}

void interested_in_the_change(int i) {

  std::cout << "Ah, the value has changed.\n";

}

class notifier {

  typedef void (*function_type)(int);

  std::vector<function_type> vec_;

  int value_;

public:

  void add_observer(function_type t) {

    vec_.push_back(t);

  }

  void change_value(int i) {

    value_=i;

    for (std::size_t i=0;i<vec_.size();++i) {

      (*vec_[i])(value_);

    }

  }

};

int main() {

  notifier n;

  n.add_observer(&print_new_value);

  n.add_observer(&interested_in_the_change);

  n.change_value(42);

}

Two functions, print_new_value and interested_in_the_change, have a signature that is compatible with what the
notifier class supports. The function pointers are stored in a vector, and then invoked in a loop whenever the value
changes. One syntax for invoking the functions is

(*vec_[i])(value_);

The dereferenced function pointer (which is what is returned from vec_[i]) is passed the value (value_). It's also valid
to write the code differently, like this:

vec_[i](value_);

This may seem a bit nicer to the eye, but more importantly, it also allows you to replace the function pointer with
Boost.Function without syntactic changes for invocation. Now, this works fine, but alas, function objects don't work
at all with this notifier class. Actually, nothing but function pointers work, which is a serious limitation. It would work,
however, if we were using Boost.Function. Rewriting the notifier class is fairly straightforward.

class notifier {

  typedef boost::function<void(int)> function_type;

  std::vector<function_type> vec_;

  int value_;

public:

  template <typename T> void add_observer(T t) {

    vec_.push_back(function_type(t));

  }

  void change_value(int i) {

    value_=i;

    for (std::size_t i=0;i<vec_.size();++i) {

      vec_[i](value_);

    }

  }

};

The first thing to do is to change the typedef to refer to boost::function rather than a function pointer. Before, we
defined a function pointer; now we are using the generalization, which will soon prove its usefulness. Next, we change
the signature of the member function add_observer to be parameterized on the argument type. We could have
changed it to accept boost::function instead, but that means that users of our class would need to understand how
function works[2] too, rather than just knowing about the requirements for the observer type. It should be duly noted
that this change of add_observer is not a result of switching to function; the code would continue to work anyway.
We make the change for generality; now, both function pointers, function objects, and instances of boost::function can
be passed to add_observer, without any changes to existing user code. The code for adding elements to the vector is
slightly altered, and now creates instances of boost::function<void(int)>. Finally, we change the code that invokes the
functions to the syntax that can be used for functions, function objects, and instances of boost::function.[3] This
extended support for different types of function-like "things" can immediately be put to use with a stateful function
object, which represents something that could not be easily done using functions.

[2] They should know about Boost.Function, but what if they don't? Everything that we add to an interface will need
to be explained to users at some point in time.

[3] Now we know that we should actually have been invoking like this from the beginning.

class knows_the_previous_value {

  int last_value_;

public:

  void operator()(int i) {

    static bool first_time=true;

    if (first_time) {

      last_value_=i;

      std::cout << 

        "This is the first change of value, \

         so I don't know the previous one.\n";

      first_time=false;

      return;

    }

    std::cout << "Previous value was " << last_value_ << '\n';

    last_value_=i;

  }

};

This function object stores the previous value and prints it to std::cout whenever the value changes again. Note that the
first time it is invoked, it doesn't know about the previous value. The function object detects this using a static bool
variable in the function, which is initially set to true. Because static variables in functions are initialized when the
function is first invoked, it is only set to true during the first invocation. Although static variables can be used like this
to provide state for free functions too, we must understand that it does not scale well, and is hard to do safely in a
multithreaded environment. So, function objects with state are always to be preferred over free functions with static
variables. The notifier class doesn't mind this function object at allit complies with the requirements and is therefore
accepted. This updated sample program demonstrates how this works.

int main() {

  notifier n;

  n.add_observer(&print_new_value);

  n.add_observer(&interested_in_the_change);

  n.add_observer(knows_the_previous_value());

  n.change_value(42);

  std::cout << '\n';

  n.change_value(30);

}

The important line to examine is where we add an observer that isn't a function pointer, but an instance of the function
object knows_the_previous_value. Running the program gives the following output:

The value has been updated and is now 42

Ah, the value has changed.

This is the first change of value, 

so I don't know the previous one.

The value has been updated and is now 30

Ah, the value has changed.

Previous value was 42

The great advantage here, more than relaxing the requirements on the functions (or rather, the additional support for
function objects), is that we can introduce objects with state, which is a very common need. The changes that we
made to the notifier class were trivial, and user code wasn't affected at all. As shown here, introducing Boost.Function
into an existing design is typically straightforward.

 Functions That Are Class Members

 Boost.Function does not support argument binding, which would be needed to make each invocation of a function
invoke a member function on the same class instance. Fortunately, it is possible to directly call member functions if the
class instance is passed to the function. The signature of the function needs to include the type of the class, as well as
the signature of the member function. In other words, the class instance is passed explicitly as what would normally be
the implicit first parameter, this. The result is a function object that invokes a member function on the supplied object.
Consider the following class:

class some_class {

public:

  void do_stuff(int i) const {

    std::cout << "OK. Stuff is done. " << i << '\n';

  }

};

The member function do_stuff is to be called from within an instance of boost::function. To do this, we need the
function to accept an instance of some_class, and have the rest of the signature be a void return and an int argument.
We have three choices when it comes to deciding how the instance of some_class should be passed to the function:
by value, by reference, or by address. To pass by value, here's how the code would look.[4]

[4] There are seldom good reasons for passing the object parameter by value.

boost::function<void(some_class,int)> f;

Note that the return type still comes first, followed by the class where the member function is a member, and finally
the arguments to the member function. Think of it as passing this to the function, which is implicitly the case when
calling non-static member functions on an instance of a class. To configure the function f with the member function
do_stuff, and then invoke the function, we do this:

f=&some_class::do_stuff;

f(some_class(),2);

When passing by reference, we change the signature of the function, and pass an instance of some_class. 

boost::function<void(some_class&,int)> f;

f=&some_class::do_stuff;

some_class s;

f(s,1);

Finally, to pass a pointer[5] to some_class, this is how we'd write the code:

[5] Both raw pointers and smart pointers will do.

boost::function<void(some_class*,int)> f;

f=&some_class::do_stuff;

some_class s;

f(&s,3);

So, all the likely variants for passing instances of the "virtual this" are provided by the library. Of course, there is a
limitation to this technique: You have to pass the class instance explicitly; and ideally, you'd want the instance to be
bound in the function object instead. At first glance, that seems to be a disadvantage of Boost.Function, but there are
other libraries that support binding arguments, such as Boost.Bind and Boost.Lambda. We will examine the added
value that a collaboration with such libraries brings to Boost.Function later in this chapter.

 Stateful Function Objects

 We have already seen that it is possible to add state to callback functions, because of the support for function
objects. Consider a class, keeping_state, which is a function object with state. Instances of keeping_state remember a
total, which is increased each time the function call operator is invoked. Now, when using an instance of this class with
two instances of boost::function, the results may be somewhat surprising.

#include <iostream>

#include "boost/function.hpp"

class keeping_state {

  int total_;

public:

  keeping_state():total_(0) {}

  int operator()(int i) {

    total_+=i;

    return total_;

  }

  int total() const {

    return total_;

  }

};

int main() {

  keeping_state ks;

  boost::function<int(int)> f1;

  f1=ks;

  boost::function<int(int)> f2;

  f2=ks;

  std::cout << "The current total is " << f1(10) << '\n';

  std::cout << "The current total is " << f2(10) << '\n';

  std::cout << "After adding 10 two times, the total is " 

    << ks.total() << '\n';

}

When writing, and subsequently running, this program, the programmer probably expects that the total stored in ks is
20, but it's not; in fact, it's 0. This is the output when running the program.

The current total is 10

The current total is 10

After adding 10 two times, the total is 0

The reason is that each instance of function (f1 and f2) contains a copy of ks, and each of those instances winds up
with a total value of 10, but ks is unchanged. This may or may not be what is intended, but it is important to remember
that the default behavior of boost::function is to copy the function object that it is to invoke. If that produces incorrect
semantics, or if the copying of some function objects is too expensive, you must wrap the function objects in
boost::reference_wrapper so that boost::function's copy will be a copy of a boost::reference_wrapper, which just
holds a reference to the original function object. You rarely use boost::reference_wrapper directly, but rather you use
two helper functions, ref and cref. Those functions return a reference_wrapper that holds a reference or const
reference to the parameterizing type. To get the semantics that we want in this case, using the same instance of
keeping_state, we need to change the code, like this:

int main() {

  keeping_state ks;

  boost::function<int(int)> f1;

  f1=boost::ref(ks);

  boost::function<int(int)> f2;

  f2=boost::ref(ks);

  std::cout << "The current total is " << f1(10) << '\n';

  std::cout << "The current total is " << f2(10) << '\n';

  std::cout << "After adding 10 two times, the total is " 

    << ks.total() << '\n';

}

This usage of boost::ref informs boost::function that we want to store a reference to the function object, not a copy.
Running this program produces the following output:

The current total is 10

The current total is 20

After adding 10 two times, the total is 20

This is exactly the behavior that we needed in this case. The difference between using boost::ref and boost::cref is
exactly the same as the difference between references and references to constyou can only call constant member
functions for the latter. The following example uses a function object called something_else, which has a function call
operator that is const.

class something_else {

public:

  void operator()() const {

    std::cout << "This works with boost::cref\n";

  }

};

With this function object, we could use either boost::ref or boost::cref.

something_else s;

boost::function0<void> f1;

f1=boost::ref(s);

f1();

boost::function0<void> f2;

f2=boost::cref(s);

f2();

If we change the implementation of something_else and make the function non-const, only boost::ref will work,
whereas boost::cref would produce an error at compile time.

class something_else {

public:

  void operator()() {

    std::cout << 

      "This works only with boost::ref, or copies\n";

  }

};

something_else s;

boost::function0<void> f1;

f1=boost::ref(s); // This still works

f1(); 

boost::function0<void> f2;

f2=boost::cref(s); // This doesn't work; 

                   // the function call operator is not const

f2();

When a function contains a function object wrapped by boost::reference_wrapper, copy construction and assignment
replicates the referencethat is, the copy of the function references the original function object.

int main() {

  keeping_state ks;

  boost::function<int,int> f1;

  f1=boost::ref(ks);

  boost::function<int,int> f2(f1);

  boost::function<short,short> f3;

  f3=f1;

  std::cout << "The current total is " << f1(10) << '\n';

  std::cout << "The current total is " << f2(10) << '\n';

  std::cout << "The current total is " << f3(10) << '\n';

  std::cout << "After adding 10 three times, the total is " 

           << ks.total() << '\n';

}

This is equivalent to using boost::ref and assigning the function object ks to each instance of function.

 The power that is wielded with the addition of state to callbacks is tremendous, and is one of the great advantages to
using Boost.Function rather than function pointers.

 Using Boost.Bind with Boost.Function

 Things become even more interesting when we combine Boost.Function with a library that supports argument
binding. Boost.Bind provides argument binding for free functions, class member functions, and class variables. This is
a perfect fit for Boost.Function, where we often need this type of binding because the classes that we are working
with are not themselves function objects. So, we transform them into function objects using Boost.Bind, and then we
can store them for later invocation with Boost.Function. When separating graphical user interfaces (GUIs) from details
on how to handle actions (events) from the user, callbacks of some sort are almost always used. If this callback
mechanism is based on function pointers, it is hard to avoid severe limitations of the types that can be used with the
callback, which in turn increases the risk of adding coupling between the presentation and the business logic. We can
avoid this altogether by using Boost.Function, and when combined with a library that supports argument binding, we
can supply the context to invocations of functions with ease. This is one of the most common uses of this libraryto
separate knowledge of the business logic from the presentation layer.

 This example includes a state-of-the-art tape recorder, which is defined thusly.

class tape_recorder {

public:

  void play() {

    std::cout << "Since my baby left me...\n";

  }

  void stop() {

    std::cout << "OK, taking a break\n";

  }

  void forward() {

    std::cout << "whizzz\n";

  }

  void rewind() {

    std::cout << "zzzihw\n";

  }

  void record(const std::string& sound) {

    std::cout << "Recorded: " << sound << '\n';

  }

};

This tape recorder could be controlled from a GUI, or perhaps from a scripting client, or from any other source,
which means that we don't want to couple the invocation of the functions to their implementation. A common way to
create that separation is through special objects that are only responsible for executing a command, allowing the client
to remain ignorant of how the command is executed. This is known as the Command pattern, and is very useful in its
own right. One of the problems with the typical implementation of this pattern is the need to create separate classes to
execute each command. The following snippet demonstrates how this might look:

class command_base {

public:

  virtual bool enabled() const=0;

  virtual void execute()=0;

  virtual ~command_base() {}

};

class play_command : public command_base {

  tape_recorder* p_;

public:

  play_command(tape_recorder* p):p_(p) {}

  bool enabled() const {

    return true;

  }

  void execute() {

    p_->play();

  }

};

class stop_command : public command_base {

  tape_recorder* p_;

public:

  stop_command(tape_recorder* p):p_(p) {}

  bool enabled() const {

    return true;

  }

  void execute() {

    p_->stop();

  }

};

This is not a very attractive solution, because it leads to code bloat in the form of numerous simple command classes,
all with the sole responsibility of invoking a single member function on an object. Sometimes, this can prove
necessary, because the commands may need to implement business logic as well as execute a function, but it is often
just a result of limitations in the tools that we are using. These command classes can be used like this:

int main() {

  tape_recorder tr;

  // Using the command pattern

  command_base* pPlay=new play_command(&tr);

  command_base* pStop=new stop_command(&tr);

    // Invoked when pressing a button

  pPlay->execute();

  pStop->execute();

  delete pPlay;

  delete pStop;

}

Now, rather than creating an additional number of concrete command classes, we could generalize a bit if we take
advantage of the fact that the commands we are implementing are all calling a member function with a void return,
taking no argument (ignoring for the moment the function record, which does take an argument). Rather than creating
a family of concrete commands, we could store a pointer to the correct member function in the class. This is a huge
step in the right direction,[6] and it works like this:

[6] Albeit slightly less efficient.

class tape_recorder_command : public command_base {

  void (tape_recorder::*func_)(); 

  tape_recorder* p_;

public:

  tape_recorder_command(

    tape_recorder* p,

    void (tape_recorder::*func)()) : p_(p),func_(func) {}

  bool enabled() const {

    return true;

  }

  void execute() {

    (p_->*func_)();

  }

};

This implementation of the commands is much nicer, because it relieves us from having to create separate classes that
do basically the same thing. The difference here is that we are storing a pointer to a tape_recorder member function in
func_, which is provided in the constructor. The execution of the command is not something you should show all your
friends, because the pointer-to-member operators do have a habit of confusing people. However, this can be
considered a low-level implementation detail, so that's fine. With this class, we have performed a generalization that
proves useful in that we don't have to implement separate command classes anymore.

int main() {

  tape_recorder tr;

  // Using the improved command

  command_base* pPlay=

    new tape_recorder_command(&tr,&tape_recorder::play);

  command_base* pStop=

    new tape_recorder_command(&tr,&tape_recorder::stop);

  // Invoked from a GUI, or a scripting client

  pPlay->execute();

  pStop->execute();

  delete pPlay;

  delete pStop;

}

You may not realize it, but we're actually starting to implement a simplified version of boost::function, which already
does what we want. Rather than reinvent the wheel, let's focus on the task at hand: separating the invocation and the
implementation. Here is a new implementation of the command class, which is a lot easier to write, maintain, and
understand.

class command {

  boost::function<void()> f_;

public:

  command() {}

  command(boost::function<void()> f):f_(f) {}

  void execute() {

    if (f_) {

      f_();

    }

  }

  template <typename Func> void set_function(Func f) {

    f_=f;

  }

  bool enabled() const {

    return f_;

  }

};

By using Boost.Function in the implementation, we can immediately benefit from the flexibility of being compatible
both with functions and function objectsincluding function objects produced by binders. The command class stores the
function in a boost::function that returns void and doesn't take any arguments. To make the class more flexible, we
provide a way to change the function object at runtime, using a parameterized member function, set_function.

template <typename Func> void set_function(Func f) {

  f_=f;

}

By using parameterization, any function, function object, or binder is compatible with our command class. We could
also have opted to have a boost:: function as argument, and achieve the same effect using the converting constructor
of function. This command class is very general, and we can use it with our tape_recorder class or just about anything
else. An additional advantage over the previous approach when using a base class and concrete derived classes
(which in turn makes us use pointers for polymorphic behavior) is that it becomes easier to manage lifetime issueswe
don't have to delete the command objects anymore, as they can be passed and saved by value. We test whether the
command is enabled or not by using the function f_ in a Boolean context. If the function doesn't contain a target, a
function or function object, this yields false, which means that we cannot invoke it. This is tested in the implementation
of execute. Here's a sample program that uses our new class:

int main() {

  tape_recorder tr;

  command play(boost::bind(&tape_recorder::play,&tr));

  command stop(boost::bind(&tape_recorder::stop,&tr));

  command forward(boost::bind(&tape_recorder::stop,&tr));

  command rewind(boost::bind(&tape_recorder::rewind,&tr));

  command record;

  // Invoked from some GUI control...

  if (play.enabled()) {

    play.execute();

  }

  // Invoked from some scripting client...

  stop.execute();

  // Some inspired songwriter has passed some lyrics

  std::string s="What a beautiful morning...";

  record.set_function(

    boost::bind(&tape_recorder::record,&tr,s));

  record.execute();

}

To create the concrete commands, we use Boost.Bind to create function objects that, when invoked through the
function call operator, calls the correct member function of tape_recorder. These function objects are self-contained;
they are nullary function objects, meaning that they can be directly invoked without passing any arguments, which is
what a boost::function<void()> expects. In other words, the following code snippet creates a function object that
invokes the member function play on the instance of tape_recorder that it is configured with.

boost::bind(&tape_recorder::play,&tr)

Normally, we wouldn't be able to store the returned function object from the call to bind, but because Boost.Function
is compatible with any function object, this is possible.

boost::function<void()> f(boost::bind(&tape_recorder::play,&tr));

Notice that the class also supports calling record, which takes an argument of type const std::string&, because of the
member function set_function. Because the function object must be nullary, we need to bind the context so that record
still gets its argument. That, of course, is a job for binders. Thus, before calling record, we create a function object
that contains the string to be recorded.

std::string s="What a beautiful morning...";

record.set_function(

  boost::bind(&tape_recorder::record,&tr,s));

Executing the function object stored in record passes the string to tape_recorder::record, invoked on the
tape_recorder instance tr. With Boost.Function and Boost.Bind, it is possible to achieve the decoupling that makes it
possible for the invoking code to know nothing about the code being invoked. It's immensely useful to combine these
two libraries in this way. Having shown you the command class, it's time for me to come clean. All you really need,
because of the power of Boost.Function, is the following:

typedef boost::function<void()> command;

Using Boost.Lambda with Boost.Function

 Just as Boost.Function is compatible with the function objects that are created by Boost.Bind, it also supports
Boost.Lambda, which also creates function objects. Any function object that you create with the Lambda library is
compatible with the corresponding boost::function. We have covered some ground on binding in the previous section,
and the main difference is that it is possible to do even more with Boost.Lambda. We can create these small,
unnamed functions at ease, and store them in instances of boost::function for subsequent invocation. We have covered
lambda expressions in the previous chapterany of the examples that were provided there produced function objects
that could be stored in an instance of function. The combination of function and libraries that create function objects is
extremely powerful.

 Thinking About the Cost

 There's no such thing as a free lunch, as the saying goes, and this certainly applies to Boost.Function, too. There are
some disadvantages of using Boost.Function compared to using function pointers, most notably the increase in size. A
function pointer obviously occupies the space of one function pointer (duh!), whereas an instance of boost::function is
three times as large. This can be an issue when there is a very large number of callbacks. Function pointers are also
slightly more efficient when invoked, because where a function pointer is invoked directly, Boost.Function may require
two calls through function pointers. Finally, there may be cases where the backward compatibility with C libraries
makes function pointers the only choice. 

Although these are potential disadvantages of Boost.Function, it is not very often that these are real-world issues. The
extra size is still very small, and the overheard of the (potential) extra call through a function pointer usually comes at a
very small cost indeed compared to the time it takes to actually perform the computations of the target function. It
should be the rare situation that mandates using function instead of Boost.Function. The great advantages and the
flexibility that is gained through using the library easily outweigh these costs.

 Under the Hood

 As always, it is valuable to understand at least the basics of how a library works. We shall consider the three cases of
storing and invoking a function pointer, a pointer to member function, and a function object. These three are all
different. To see exactly how Boost.Function works, just look at the source codewe are going to do things a bit
differently, in an attempt to clearly show how different versions of such beasts demand slightly different approaches.
We will also have a class with different requirements, namely that when calling a member function, a pointer to an
instance of the class must be passed to the constructor of function1 (which is the name of our class). function1
supports functions taking exactly one argument. A relaxation of the requirements compared to Boost.Function is that
even for member functions, only the type of the result and the argument need to be supplied. This is a direct
consequence of the requirement that the constructor must be passed a pointer to an instance of the class for which the
member is to be called (the type is automatically deduced).

 The approach we shall take is to create a parameterized base class that declares a virtual function for the function call
operator; then, three classes are derived from this base class for the different forms of function invocations that we are
to support. These classes take care of all the work, while another, function1, decides which of these concrete classes
to instantiate depending on the arguments to the constructor. Here is the base class for the invokers, invoker_base.

template <typename R, typename Arg> class invoker_base {

public:

  virtual R operator()(Arg arg)=0;

};

Next, we begin with the definition of function_ptr_invoker, which is a concrete invoker that derives publicly from
invoker_base. Its purpose is to invoke free functions. The class also accepts two types, the return type and the
argument type, and these are used for the constructor, which takes a function pointer as argument.

template <typename R, typename Arg> class function_ptr_invoker 

  : public invoker_base<R,Arg> {

  R (*func_)(Arg);

public:

  function_ptr_invoker(R (*func)(Arg)):func_(func) {}

  R operator()(Arg arg) {

    return (func_)(arg);

  }

};

This class template can be used to call any free function that accepts one argument. The function call operator simply
invokes the function stored in func_ with the parameter it is given. Note the (admittedly strange) line that declares a
variable to store the function pointer.

R (*func_)(Arg);

You can make that a little plainer using a typedef.

typedef R (*FunctionT)(Arg);

FunctionT func_;

Next, we need a class template that can handle member function calls. Remember that it should also require a pointer
to an instance of the class type when constructed, which is different from the way that Boost.Function works. It does
save us some typing, because the compiler, not the programmer, deduces the type of the class. 

template <typename R, typename Arg, typename T> 

  class member_ptr_invoker : 

    public invoker_base<R,Arg> {

  R (T::*func_)(Arg);

  T* t_;

public:

  member_ptr_invoker(R (T::*func)(Arg),T* t)

    :func_(func),t_(t) {}

  R operator()(Arg arg) {

    return (t_->*func_)(arg);

  }

};

This class template is very similar to the version for free function pointers. It differs from the previous one in that the
constructor stores a member function pointer and a pointer to an object and the function call operator invokes the
member function (func_) on that object (t_). 

Finally, we need a version that is compatible with function objects. This is actually the easiest implementation of all, at
least when defining it our way. By using a single template parameter, we just state that the type T must indeed be a
function object, because we intend to invoke it as such. Enough said.

template <typename R, typename Arg, typename T> 

  class function_object_invoker : 

    public invoker_base<R,Arg> {

  T t_;

public:

  function_object_invoker(T t):t_(t) {}

  R operator()(Arg arg) {

    return t_(arg);

  }

};

Now that we have these building blocks in place, all that remains is to put the pieces together in our version of
boost::function, the function1 class. We want a way to detect which kind of invoker to instantiate. We can then save it
in a pointer to invoker_base. The trick here is to provide constructors that are capable of detecting which type of
invoker is correct for the supplied arguments. It's just overloading, with a little twist involving parameterizing two of
the constructors.

template <typename R, typename Arg> class function1 {

  invoker_base<R,Arg>* invoker_;

public:

  function1(R (*func)(Arg)) : 

    invoker_(new function_ptr_invoker<R,Arg>(func)) {}

  template <typename T> function1(R (T::*func)(Arg),T* p) : 

    invoker_(new member_ptr_invoker<R,Arg,T>(func,p)) {}

  template <typename T> function1(T t) : 

    invoker_(new function_object_invoker<R,Arg,T>(t)) {}

  R operator()(Arg arg) {

    return (*invoker_)(arg);

  }

  ~function1() {

    delete invoker_;

  }

};

As you can see, the hard part here is to correctly define the deduction system that is needed in order to support
function pointers, class member functions, and function objects. This is true regardless of the actual design that is used
to implement a library with this kind of functionality. To conclude, here is some sample code that we can use to test
the solution.

bool some_function(const std::string& s) {

  std::cout << s << " This is really neat\n";

  return true;

}

class some_class {

public:

  bool some_function(const std::string& s) {

    std::cout << s << " This is also quite nice\n";

    return true;

  }

};

class some_function_object {

public:

  bool operator()(const std::string& s) {

    std::cout << s << 

      " This should work, too, in a flexible solution\n";

    return true;

  }

};

All of these are acceptable for our function1 class:

int main() {

  function1<bool,const std::string&> f1(&some_function);

  f1(std::string("Hello"));

  some_class s;

  function1<bool,const std::string&> 

    f2(&some_class::some_function,&s);

  f2(std::string("Hello"));

  function1<bool,const std::string&>

    f3(boost::bind(&some_class::some_function,&s,_1));

  f3(std::string("Hello"));

  some_function_object fso;

  function1<bool,const std::string&> 

    f4(fso);

  f4(std::string("Hello"));

}

It also works with function objects returned from binder libraries, such as Boost.Bind and Boost.Lambda. Our class
is a lot more simplistic than the ones found in Boost.Function, but it should be sufficiently detailed to see the problems
and the solutions involved when creating and using such a library. To know a little something about how a library is
implemented is helpful for using it as effectively as possible. 





Function Summary
 Use Function when



 You need to store a callback function, or function object


You want to decouple function calls from the implementation, for example between the GUI and the
implementation



You want to store function objects created by binder libraries to be invoked at a later time, or multiple times

 Boost.Function is an important addition to the offerings from the Standard Library. The well-known technique of
using function pointers as a callback mechanism is extended to include anything that behaves like a function, including
function objects created by binder libraries. Through the use of Boost.Function, it is easy to add state to the
callbacks, and to adapt existing classes and member functions to be used as callback functions.

 There are several advantages to using Boost.Function rather than function pointers: relaxed requirements on the
signature through compatible function objects rather than exact signatures; the possibility to use binders, such as
Boost.Bind and Boost.Lambda; the ability to test whether functions are emptythat is, that there is no targetbefore
attempting to invoke them; and the notion of stateful objects rather than just stateless functions. Each of these
advantages favor using Boost.Function over the C-style callbacks that have been prevalent in solving this type of
problem. Only when the small additional cost of using Boost.Function compared to function pointers is prohibitive
should the function pointer technique be considered.

 Boost.Function was created by Douglas Gregor. It is a library with many powerful features, and is expertly designed
and implemented to provide exceptional user value.
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How Does the Signals Library Improve Your Programs?


 Flexible multicast callbacks for functions and function objects


A robust mechanism for triggering and handling events


Compatibility with function object factories, such as Boost.Bind and Boost.Lambda

 The Boost.Signals library reifies signals and slots, where a signal is something that can be "emitted," and slots are
connections that receive such signals. This is a well-known design pattern that goes under a few different
namesObserver, signals/slots, publisher/subscriber, events (and event targets)but these names all refer to the same
thing, which is a one-to-many relation between some source of information and instances that are interested in
knowing when that information changes. There are many cases where this design pattern is used; one of the most
obvious is in GUI code, where certain actions (for example, the user clicks a button) are loosely connected to some
kind of action (the button changes its appearance, and some business logic is performed). There are many more cases
where signals and slots are useful to decouple the trigger of an action (signal) from the code that handles it (one or
more slots). This can be used to dynamically alter the behavior of the handling code, to allow multiple handlers of the
same signal, or to reduce type dependencies through an abstract connection between types via signals and slots. With
Boost.Signals, it is possible to create signals that accept slots with any given function signaturethat is, slots that accept
arguments of arbitrary types. This approach makes the library very flexible; it accommodates the signaling needs of
virtually any domain. By decoupling the source of the signal and the handlers thereof, systems become more robust in
terms of both physical and logical dependencies. It's possible to let the signaling types be totally ignorant of the slot
types, and vice versa. This is imperative to achieve a higher level of reusability, and it can help break cyclic
dependencies. So, a signals and slots library isn't only about object-oriented callbacks, it's also about the robustness
of the whole system to which it is applied.



How Does Signals Fit with the Standard Library?
 There is nothing in the C++ Standard Library that addresses callbacks, yet there is an obvious need for such facilities.
Boost.Signals is designed in the same spirit as the Standard Library, and it is a great addition to the Standard Library
toolbox.





Signals

 Header: "boost/signals.hpp"

 This includes all of the library through a single header.

"boost/signals/signal.hpp"

contains the definition of signals.

"boost/signals/slot.hpp"

contains the definition of the slot class.

"boost/signals/connection.hpp"

contains definitions of the classes connection and scoped_connection.

 To use this library, either include the header "boost/signals.hpp", which ensures that the entire library is available, or
include the separate headers containing the functionality that you need. The core of the Boost.Signals library exists in
namespace boost, and advanced features reside in boost::signals.

 The following is a partial synopsis for signal, followed by a brief discussion of the most important members. For a full
reference, see the online documentation for Signals.

namespace boost {

  template<typename Signature,

  // Function type R(T1, T2, ..., TN)

    typename Combiner = last_value<R>,

    typename Group = int,

    typename GroupCompare = std::less<Group>,

    typename SlotFunction = function<Signature> >

  class signal : public signals::trackable,

                 private noncopyable {

  public:

    signal(const Combiner&=Combiner(),

           const GroupCompare&=GroupCompare());

    ~signal();

    signals::connection connect(const slot_type&);

    signals::connection connect(

      const Group&,

      const slot_type&);

    void disconnect(const Group&);

    std::size_t num_slots() const;

    result_type operator()

      (T1, T2, ..., TN);

  };

}

Types

 Let's have a look first at the template parameters for signal. There are reasonable defaults for all but the first
argument, but it helps to understand the basic meaning of these parameters. The first template parameter is the actual
signature of the function to be invoked. In the case of signals, the signal itself is the entity to be invoked. When
declaring this signature, use the same syntax as for ordinary function signatures.[1] For example, the signature for a
function returning double and accepting one argument of type int looks like this:

[1] The alert reader might notice that this is how boost::function works, too.

signal<double(int)>

The Combiner parameter denotes a function object responsible for iterating through and calling all of the connected
slots for the signal. It also determines how to combine the results of invoking the handlers. The default type,
last_value, simply returns the result of invoking the last slot.

 The Groups parameter is the type to be used for grouping the slots that are connected to the signal. By connecting to
different slot groups, it's possible to predict the order of slot invocation, and to disconnect groups of slots
simultaneously.

 The GroupCompare parameter decides how the Groups are ordered, and the default is std::less<Group>, which is
almost always correct. If a custom type is used for Groups, some other ordering sometimes makes sense.

 Finally, the SlotFunction parameter denotes the type of the slot functions, and the default is a boost::function. I am not
familiar with any scenarios where changing this default would be wise. This template parameter is used to define the
slot type, available through the public typedef slot<SlotFunction> slot_type.

 Members

signal(const Combiner&=Combiner(),

  const GroupCompare&=GroupCompare());

When constructing a signal, it's possible to pass a Combiner, which is an object responsible for invoking the slots and
handling the logic for the values returned when signaling to the slots.

~signal();

The destructor disconnects all of the slots that are connected at the time of destruction.

signals::connection connect(const slot_type& s);

The connect function connects the slot s to the signal. A function pointer, function object, a bind expression, or a
lambda expression can be used as slots. connect returns a signals::connection, which is a handle to the created
connection. Using that handle, the slot can be disconnected from the signal, or you can test whether the slot is still
connected.

signals::connection connect(const Group& g, const slot_type& s);

This overloaded version of connect works like the previous one, and in addition, it connects the slot s to the group g.
Connecting a slot to a group means that when a signal is signaling, slots that belong to groups that precede other
groups are called before those (as described by the ordering for the groups, the GroupCompare parameter to the
signal template), and all slots that belong to a group are called before those that aren't (it's possible to have only some
of the slots in groups).

void disconnect(const Group& g);

Disconnects all of the connected slots that belong to the group g.

std::size_t num_slots() const;

Returns the number of slots that are currently connected to the signal. It is preferred to call the function empty rather
than test the return value from num_slots against 0, because empty can be more efficient.

result_type operator()(T1, T2, ..., TN);

signals are invoked using the function call operator. When signaling, the appropriate arguments must be passed to the
function call operator, as described by the signature of the signal (the first template parameter when declaring the
signal type). The types of arguments must be implicitly convertible to the types required by the signal for the invocation
to succeed.

 There are other types available in Boost.Signals, but rather than distract you with a synopsis and discussion of each
here, we'll discuss them in detail throughout the rest of this chapter. We will also discuss useful typedefs in the signal
class.







Usage
 When faced with needing more than one piece of code in a program to handle a given event, typical solutions involve
callbacks through function pointers, or directly coded dependencies between the subsystem that fires the event and
the subsystems that need to handle it. Circular dependencies are a common result of such designs. Using
Boost.Signals, you gain flexibility and decoupling. To start using the library, include the header "boost/signals.hpp".[2]

 The following example demonstrates the basic properties of signals and slots, including how to connect them and how
to emit the signal. Note that a slot is something that you provide, either a function or a function object that is
compatible with the function signature of the signal. In the following code, we create both a free function,
my_first_slot, and a function object, my_second_slot; both are then connected to the signal that we create.

#include <iostream>

#include "boost/signals.hpp"

void my_first_slot() {

  std::cout << "void my_first_slot()\n";

}

class my_second_slot {

public:

  void operator()() const {

    std::cout <<

      "void my_second_slot::operator()() const\n";

  }

};

int main() {

  boost::signal<void ()> sig;

  sig.connect(&my_first_slot);

  sig.connect(my_second_slot());

  std::cout << "Emitting a signal...\n";

  sig();

}

We start by declaring a signal, which expects slots that return void and take no arguments. We then connect two
compatible slot types to that signal. For one, we call connect with the address of the free function, my_first_slot. For
the other, we default-construct an instance of the function object my_second_slot and pass it to connect. These
connections mean that when we emit a signal (by invoking sig), the two slots will be called immediately.

sig();

When running the program, the output will look something like this:

Emitting a signal...

void my_first_slot()

void my_second_slot::operator()() const

However, the order of the last two lines is unspecified because slots belonging to the same group are invoked in an
unspecified order. There is no way of telling which of our slots will be called first. Whenever the calling order of slots
matters, you must put them into groups.

 Grouping Slots

 It is sometimes important to know that some slots are called before others, such as when the slots have side effects
that other slots might depend upon. Groups is the name of the concept that supports such requirements. It is a signal
template argument named Group that is, by default, int. The ordering of Groups is std::less<Group>, which translates
to operator< for int. In other words, a slot belonging to group 0 is called before a slot in group 1, and so on. Note,
however, that slots in the same group are called in an unspecified order. The only way to exactly control the order by
which all slots are called is to put every slot into its own group.

 A slot is assigned to a group by passing a Group to signal::connect. The group to which a connected slot belongs
cannot be changed; to change the group for a slot, it must be disconnected and then reconnected to the signal in the
new group.

 As an example, consider two slots taking one argument of type int&; the first doubles the argument, and the second
increases the current value by 3. Let's say that the correct semantics are that the value first be doubled, and then
increased by 3. Without a specified order, we have no way of ensuring these semantics. Here's an approach that
works on some systems, some of the time (typically when the moon is full and it's Monday or Wednesday).

#include <iostream>

#include "boost/signals.hpp"

class double_slot {

  public:

  void operator()(int& i) const {

    i*=2;

  }

};

class plus_slot {

public:

  void operator()(int& i) const {

    i+=3;

  }

};

int main() {

  boost::signal<void (int&)> sig;

  sig.connect(double_slot());

  sig.connect(plus_slot());

  int result=12;

  sig(result);

  std::cout << "The result is: " << result << '\n';

}

When running this program, it might produce this output:

The result is: 30

Or, it might produce this:

The result is: 27

There's simply no way of guaranteeing the correct behavior without using groups. We need to ensure that double_slot
is always called before plus_slot. That requires that we specify that double_slot belongs to a group that is ordered
before plus_slot's group, like so:

sig.connect(0,double_slot());

sig.connect(1,plus_slot());

This ensures that we'll get what we want (in this case, 27). Again, note that for slots belonging to the same group, the
order with which they are called is unspecified. As soon as a specific ordering of slot invocation is required, make
sure to express that using different groups.

 Note that the type of Groups is a template parameter to the class signal, which makes it possible to use, for example,
std::string as the type.

#include <iostream>

#include <string>

#include "boost/signals.hpp"

class some_slot {

  std::string s_;

public:

  some_slot(const std::string& s) : s_(s) {}

  void operator()() const {

    std::cout << s_ << '\n';

  }

};

int main() {

  boost::signal<void (),

    boost::last_value<void>,std::string> sig;

  some_slot s1("I must be called first, you see!");

  some_slot s2("I don't care when you call me, not at all. \

    It'll be after those belonging to groups, anyway.");

  some_slot s3("I'd like to be called second, please.");

  sig.connect(s2);

  sig.connect("Last group",s3);

  sig.connect("First group",s1);

  sig();

}

First we define a slot type that prints a std::string to std::cout when it is invoked. Then, we get to the declaration of the
signal. Because the Groups parameter comes after the Combiner type, we must specify that also (we'll just declare the
default). We then set the Groups type to std::string.

boost::signal<void (),boost::last_value<void>,std::string> sig;

We accept the defaults for the rest of the template parameters. When connecting the slots s1, s2, and s3, the groups
that we create are lexicographically ordered (because that's what std::less<std::string> does), so "First group"
precedes "Last group". Note that because these string literals are implicitly convertible to std::string, we are allowed to
pass them directly to the connect function of signal. Running the program tells us that we got it right.

I must be called first, you see!

I'd like to be called second, please.

I don't care when you call me, not at all.

It'll be after those belonging to groups, anyway.

We could have opted for another ordering when declaring the signal typefor example, using std::greater.

boost::signal<void (),boost::last_value<void>,

  std::string,std::greater<std::string> > sig;

Had we used that in the example, the output would be

I'd like to be called second, please.

I must be called first, you see!

I don't care when you call me.

Of course, for this example, std::greater produces an ordering that leads to the wrong output, but that's another story.
Groups are useful, even indispensable, but it's not always trivial to assign the correct group values, because connecting
slots isn't necessarily performed from the same location in the code. It can thus be a problem to know which value
should be used for a particular slot. Sometimes, this problem can be solved with disciplinethat is, commenting the
code and making sure that everyone reads the commentsbut this only works when there aren't many places in the
code where the values are assigned and when there are no lazy programmers. In other words, this approach doesn't
work. Instead, you need a central source of group values that can be generated based upon some supplied value that
is unique to each slot or, if the dependent slots know about each other, the slots could provide their own group value.

 Now that you know how to deal with issues of slot call ordering, let's take a look at different signatures for your
signals. You often need to pass additional information along about important events in your systems.

 Signals with Arguments

 Often, there is additional data to be passed to a signal. For example, consider a temperature guard that reports
drastic changes in the temperature. Just knowing that the guard detected a problem can be insufficient; a slot may
need to know the current temperature. Although both the guard (the signal) and the slot could access the temperature
from a common sensor, it may be simplest to have the guard pass the current temperature to the slot when invoking it.
As another example, consider when slots are connected to several signals: The slots will most likely need to know
which signal invoked it. There are myriad use cases that require passing some information from signal to slot. The
arguments that slots expect are part of a signal's declaration. The first argument to the signal class template is the
signature for invoking the signal, and this signature is also used for the connected slots when the signal calls them. If
we want the argument to be modifiable, we make sure that it is passed by non-const reference or pass a pointer, else
we can pass it by value or reference to const. Note that besides the obvious difference that the original argument is
either modifiable or not, this also has implications for the types of acceptable arguments to the signal itself and to the
slot typeswhen the signal expects an argument by value or as reference to const, types that are implicitly convertible to
the argument's type can be used to emit a signal. Likewise for slotsif the slot accepts its arguments by value or
reference to const, this means that implicit conversion to that type from the actual argument type of the signal is
allowed. We'll see more of this soon, as we consider how to properly pass arguments when signaling.

 Consider an automatic parking lot guard, which receives notifications as soon as a car enters or leaves the parking
lot. It needs to know something unique about the carfor example, the car's registration number, so it can track the
coming and going of each. (That would also permit the system to know just how ridiculous a sum to charge the owner
according to the elapsed time.) The guard should also have a signal of its own, to be able to trigger an alarm when
someone is trying to cheat. There needs to be a few security guards to listen to that signal, which we'll model using a
class called security_guard. Finally, let's also add a gate class, which contains a signal that is signaled whenever a car
enters or leaves the parking lot. (The parking_lot_guard will definitely be interested in knowing about this.) Let's look
first at the declaration for the parking_lot_guard.

class parking_lot_guard {

  typedef

    boost::signal<void (const std::string&)> alarm_type;

  typedef alarm_type::slot_type slot_type;

  boost::shared_ptr<alarm_type> alarm_;

  typedef std::vector<std::string> cars;

  typedef cars::iterator iterator;

  boost::shared_ptr<cars> cars_;

public:

  parking_lot_guard();

  boost::signals::connection

    connect_to_alarm(const slot_type& a);

  void operator()(bool is_entering,const std::string& car_id);

private:

  void enter(const std::string& car_id);

  void leave(const std::string& car_id);

};

There are three especially important parts to look at closely here; first of these is the alarm, which is a boost::signal
that returns void and takes a std::string (which will be the identifier of the car). The declaration of such a signal is
worth looking at again.

boost::signal<void (const std::string&)>

It's just like a function declaration, only without a function name. When in doubt, try to remember that there's really
nothing more to it than that! It is possible to connect to this signal from outside using the member function
connect_to_alarm. (We'll address how and why we would want to sound this alarm when implementing this class.)
The next thing to note is that both the alarm and the container of car identifiers (a std::vector containing std::strings) are
stored in boost::shared_ptrs. The reason for this is that although we only intend to declare one instance of
parking_lot_guard, there are going to be multiple copies of it; because this guard class will also be connected to other
signals later on, which will create copies (Boost.Signals copies the slots, which is required for managing lifetime
correctly); but we still want all of the data to be available, so we share it. We could have avoided copying
altogetherfor example, by using pointers or externalizing the slot behavior from this classbut doing it this way nicely
illuminates a trap that's easy to fall into. Finally, note that we have declared a function call operator, and the reason for
this is that we are going to connect the parking_lot_guard to a signal in the gate class (that we have yet to declare).

 Let's turn our attention to the security_guard class.

class security_guard {

  std::string name_;

public:

  security_guard (const char* name);

  void do_whatever_it_takes_to_stop_that_car() const;

  void nah_dont_bother() const;

  void operator()(const std::string& car_id) const;

};

The security_guards don't really do much. The class has a function call operator, which is used as a slot for alarms
from the parking_lot_guard, and just two other functions: One is for trying to stop cars for which the alarm goes off,
and the other is used to do nothing. This brings us to the gate class, which detects when cars arrive at the parking lot,
and when they leave it.

class gate {

  typedef

    boost::signal<void (bool,const std::string&)> signal_type;

  typedef signal_type::slot_type slot_type;

  signal_type enter_or_leave_;

public:

  boost::signals::connection

    connect_to_gate(const slot_type& s);

  void enter(const std::string& car_id);

  void leave(const std::string& car_id);

};

You'll note that the gate class contains a signal that is to be emitted when a car either enters or leaves the parking lot.
There is a public member function (connect_to_gate) for connecting to this signal, and two more functions (enter and
leave) that are to be called as cars come and go.

 Now that we know the players, it's time to take a stab at implementing them. Let's start with the gate class.

class gate {

  typedef

    boost::signal<void (bool,const std::string&)> signal_type;

  typedef signal_type::slot_type slot_type;

  signal_type enter_or_leave_;

public:

  boost::signals::connection

    connect_to_gate(const slot_type& s) {

    return enter_or_leave_.connect(s);

  }

  void enter(const std::string& car_id) {

    enter_or_leave_(true,car_id);

  }

  void leave(const std::string& car_id) {

    enter_or_leave_(false,car_id);

  }

};

The implementation is trivial. Most of the work is forwarded to other objects. The function connect_to_gate simply
forwards a call to connect for the signal enter_or_leave_. The function enter signals the signal, passing TRue (this
means that the car is entering) and the identifier of the car. leave does the same thing, but passes false, indicating that
the car is leaving. A simple class for a simple chore. The security_guard class isn't much more complicated.

class security_guard {

  std::string name_;

public:

  security_guard (const char* name) : name_(name) {}

  void do_whatever_it_takes_to_stop_that_car() const {

    std::cout <<

      "Stop in the name of...eh..." << name_ << '\n';

}

  void nah_dont_bother() const {

    std::cout << name_ <<

      " says: Man, that coffee tastes f i n e fine!\n";

  }

  void operator()(const std::string& car_id) const {

    if (car_id.size() && car_id[0]=='N')

      do_whatever_it_takes_to_stop_that_car();

    else

      nah_dont_bother();

  }

};

security_guards know their names, and they can decide whether to do something when the alarm goes off (if the
car_id starts with the letter N, they spring into action). The function call operator is the slot function that is
calledsecurity_guard objects are function objects, and adhere to the requirements for parking_lot_guard's alarm_type
signal. Things get a little more complicated with parking_lot_guard, but not too much.

class parking_lot_guard {

  typedef

    boost::signal<void (const std::string&)> alarm_type;

  typedef alarm_type::slot_type slot_type;

  boost::shared_ptr<alarm_type> alarm_;

  typedef std::vector<std::string> cars;

  typedef cars::iterator iterator;

  boost::shared_ptr<cars> cars_;

public:

  parking_lot_guard()

    : alarm_(new alarm_type), cars_(new cars) {}

  boost::signals::connection

    connect_to_alarm(const slot_type& a) {

    return alarm_->connect(a);

  }

  void operator()

    (bool is_entering,const std::string& car_id) {

    if (is_entering)

      enter(car_id);

    else

      leave(car_id);

  }

private:

  void enter(const std::string& car_id) {

    std::cout <<

      "parking_lot_guard::enter(" << car_id << ")\n";

    // If the car already exists here, sound the alarm

    if (std::binary_search(cars_->begin(),cars_->end(),car_id))

      (*alarm_)(car_id);

    else // Insert the car_id

      cars_->insert(

        std::lower_bound(

          cars_->begin(),

          cars_->end(),car_id),car_id);

  }

  void leave(const std::string& car_id) {

    std::cout <<

      "parking_lot_guard::leave(" << car_id << ")\n";

    // If there are no registered cars,

    // or if the car isn't registered, sound the alarm

    std::pair<iterator,iterator> p=

      std::equal_range(cars_->begin(),cars_->end(),car_id);

    if (p.first==cars_->end() || *(p.first)!=car_id)

       (*alarm_)(car_id);

    else

      cars_->erase(p.first);

  }

};

That's it! (Of course, as we haven't connected any slots to any signals yet, there's a bit more to do. Still, these classes
are remarkably simple for what they're about to do.) To make the shared_ptrs for the alarm and the car identifiers
behave correctly, we implement the default constructor, where the signal and the vector are properly allocated. The
implicitly created copy constructor, the destructor, and the assignment operator will all do the right thing (thanks to
these fine smart pointers). The function connect_to_alarm forwards to call to the contained signal's connect. The
function call operator tests the Boolean argument to see whether the car is entering or leaving, and makes a call to the
corresponding function enter/leave. In the function enter, the first thing that's done is to search through the vector for
the identifier of the car. Finding it would mean that something has gone wrong; perhaps someone has stolen a license
plate. The search is performed using the algorithm binary_search,[3] which expects a sorted sequence (we make sure
that it always is sorted). If we do find the identifier, we immediately sound the alarm, which involves invoking the
signal.

(*alarm_)(car_id);

We need to dereference alarm_ first, because alarm_ is a boost::shared_ptr, and when invoking it, we pass to it the
argument that is the car identifier. If we don't find the identifier, all is well, and we insert the car identifier into cars_ at
the correct place. Remember that we need the sequence to be sorted at all times, and the best way to ensure that is
by inserting elements in a location such that the ordering isn't compromised. Using the algorithm lower_bound gives us
this location in the sequence (this algorithm also expects a sorted sequence). Last but not least is the function leave,
which is called when cars are leaving through the gates of our parking lot. leave starts with making sure that the car
has been registered in our container for car identifiers. This is done using a call to the algorithm equal_range, which
returns a pair of iterators that denote the range where an element could be inserted without violating the ordering. This
means that we must dereference the returned iterator and make sure that its value is equal to the one we're looking
for. If we didn't find it, we trigger the alarm again, and if we did find it, we simply remove it from the vector. You'll
note that we didn't call any code for charging the people who park here; such evil logic is well beyond the scope of
this book.

 With all of the participants in our parking lot defined, we must connect the signals and slots or nothing will happen!
The gate class knows nothing about the parking_lot_guard class, which in turn knows nothing about the
security_guard class. This is a feature of this library: Types signaling events need not have any knowledge of the types
receiving the events. Getting back to the example, let's see if we can get this parking lot up and running.

int main() {

 // Create some guards

  std::vector<security_guard> security_guards;

  security_guards.push_back("Bill");

  security_guards.push_back("Bob");

  security_guards.push_back("Bull");

  // Create two gates

  gate gate1;

  gate gate2;

  // Create the automatic guard

  parking_lot_guard plg;

  // Connect the automatic guard to the gates

  gate1.connect_to_gate(plg);

  gate2.connect_to_gate(plg);

  // Connect the human guards to the automatic guard

  for (unsigned int i=0;i<security_guards.size();++i) {

    plg.connect_to_alarm(security_guards[i]);

  }

  std::cout << "A couple of cars enter...\n";

  gate1.enter("SLN 123");

  gate2.enter("RFD 444");

  gate2.enter("IUY 897");

  std::cout << "\nA couple of cars leave...\n";

  gate1.leave("IUY 897");

  gate1.leave("SLN 123");

  std::cout << "\nSomeone is entering twice - \

    or is it a stolen license plate?\n";

  gate1.enter("RFD 444");

}

There you have ita fully functional parking lot. We did it by creating three security_guards, two gates, and a
parking_lot_guard. These know nothing about each other, but we still needed to hook them up with the correct
infrastructure for communicating important events that take place in the lot. That means connecting the
parking_lot_guard to the two gates.

gate1.connect_to_gate(plg);

gate2.connect_to_gate(plg);

This makes sure that whenever the signal enter_or_leave_ in the instances of gate is signaled, parking_lot_guard is
informed of this event. Next, we have the security_guards connect to the signal for the alarm in parking_lot_guard.

plg.connect_to_alarm(security_guards[i]);

We have managed to decouple these types from each other, yet they have exactly the right amount of information to
perform their duties. In the preceding code, we put the parking lot to the test by letting a few cars enter and leave.
This real-world simulation reveals that we have managed to get all of the pieces to talk to each other as required.

A couple of cars enter...

parking_lot_guard::enter(SLN 123)

parking_lot_guard::enter(RFD 444)

parking_lot_guard::enter(IUY 897)

A couple of cars leave...

parking_lot_guard::leave(IUY 897)

parking_lot_guard::leave(SLN 123)

Someone is entering twice - or is it a stolen license plate?

parking_lot_guard::enter(RFD 444)

Bill says: Man, that coffee tastes f.i.n.e fine!

Bob says: Man, that coffee tastes f.i.n.e fine!

Bull says: Man, that coffee tastes f.i.n.e fine!

It's a sad fact that the fraudulent people with license plate RFD 444 got away, but you can only do so much.

 This has been a rather lengthy discussion about arguments to signalsin fact, we have covered much more than that
when examining the very essence of Signals' usefulness, the decoupling of types emitting signals and types with slots
listening to them. Remember that any types of arguments can be passed, and the signature is determined by the
declaration of the signal typethis declaration looks just like a function declaration without the actual function name. We
haven't talked at all about the return type, although that is certainly part of the signature, too. The reason for this
omission is that the return types can be treated in different ways, and next we'll look at why and how.

 Combining the Results

 When the signature of a signal and its slots have non-void return type, it is apparent that something happens to the
return values of the slots, and indeed, that invoking the signal yields a result of some kind. But what is that result? The
signal class template has a parameterizing type named Combiner, which is a type responsible for combining and
returning values. The default Combiner is boost::last_value, which is a class that simply returns the value for the last
slot it calls. Now, which slot is that? We typically don't know, because the ordering of slot calls is undefined within the
groups.[4] Let's start with a small example that demonstrates the default Combiner.

[4] So, assuming that the last group has only one slot, we do know.

#include <iostream>

#include "boost/signals.hpp"

  bool always_return_true() {

    return true;

  }

  bool always_return_false() {

    return false;

  }

int main() {

  boost::signal<bool ()> sig;

  sig.connect(&always_return_true);

  sig.connect(&always_return_false);

  std::cout << std::boolalpha << "True or false? " << sig();

}

Two slots, always_return_true and always_return_false, are connected to the signal sig, which returns a bool and
takes no argument. The result of invoking sig is printed to cout. Will it be TRue or false? We cannot know for sure
without testing (when I tried it, the result was false). In practice, you either don't care about the return value from
invoking the signal or you need to create your own Combiner in order to get more meaningful, customized behavior.
For example, it may be that the results from all of the slots accrue into the net result desired from invoking the signal.
In another case, it may be appropriate to avoid calling any more slots if one of the slots returns false. A custom
Combiner can make those things, and more, possible. This is because the Combiner iterates through the slots, calls
them, and decides what to do with the return values from them.

 Consider an initialization sequence, in which any failure should terminate the entire sequence. The slots could be
assigned to groups according to the order with which they should be invoked. Without a custom Combiner, here's
how it would look:

#include <iostream>

#include "boost/signals.hpp"

bool step0() {

  std::cout << "step0 is ok\n";

  return true;

}

bool step1() {

  std::cout << "step1 is not ok. This won't do at all!\n";

  return false;

}

bool step2() {

  std::cout << "step2 is ok\n";

  return true;

}

int main() {

  boost::signal<bool ()> sig;

  sig.connect(0,&step0);

  sig.connect(1,&step1);

  sig.connect(2,&step2);

  bool ok=sig();

  if (ok)

    std::cout << "All system tests clear\n";

  else

    std::cout << "At least one test failed. Aborting.\n";

}

With the preceding code, there is no way that the code will ever know that one of the tests has failed. As you recall,
the default combiner is boost::last_value, and it simply returns the value of the last slot call, which is the call to step2.
Running the example as-is gives us this disappointing output:

step0 is ok

step1 is not ok. This won't do at all!

step2 is ok

All system tests clear

This is clearly not the right result. We need a Combiner that stops processing when a slot returns false, and
propagates that value back to the signal. A Combiner is nothing more than a function object with a couple of
additional requirements. It must have a typedef called result_type, which is the return type of its function call operator.
Furthermore, the function call operator must be parameterized on the iterator type with which it will be invoked. The
Combiner that we need right now is quite simple, so it serves as a good example.

class stop_on_failure {

public:

  typedef bool result_type;

  template <typename InputIterator>

  bool operator()(InputIterator begin,InputIterator end) const

  {

    while (begin!=end) {

      if (!*begin)

        return false;

      ++begin;

    }

    return true;

  }

};

Note the public typedef result_type, which is bool. The type of result_type doesn't necessarily relate to the return type
of the slots. (When declaring the signal, you specify the signature of the slots and the arguments of the signal's function
call operator. However, the return type of the Combiner determines the return type of the signal's function call
operator. By default, this is the same as the return type of the slots, but it doesn't have to be the same.)
stop_on_failure's function call operator, which is parameterized on a slot iterator type, iterates over the range of slots
and calls each one; unless we encounter an error. For stop_on_failure, we don't want to continue calling the slots on
an error return, so we test the return value for each call. If it is false, the function returns immediately, else it continues
invoking the slots. To use stop_on_failure, we simply say so when declaring the signal type:

boost::signal<bool (),stop_on_failure> sig;

If we had used this in the bootstrap sequence from the previous example, the output would have been exactly as we
had intended.

step0 is ok

step1 is not ok. This won't do at all!

At least one test failed. Aborting.

Another useful type of Combiner is one that returns the maximum or the minimum, of all of the values returned by the
invoked slots. Many other interesting Combiners are possible, including one to save all results in a container. The
(excellent) online documentation for this library has an example of just such a Combinerbe sure to read it! It's not
every day you'll need to write your own Combiner class, but now and then doing so creates an especially elegant
solution to an otherwise complicated problem.

 Signals Can Never Be Copied

 I have already mentioned that signals cannot be copied, but it's worth mentioning what one should do about classes
that contain a signal. Must these classes be non-copyable too? No they don't have to be, but the copy constructor
and the assignment operator needs to be implemented by hand. Because the signal class declares the copy
constructor and the assignment operator private, a class aggregating signals has to implement the semantics that apply
for it. One way to handle copies correctly is to use shared signals between instances of a class, which is what we did
in the parking lot example. There, every instance of parking_lot_guard referred to the same signal by means of
boost::shared_ptr. For other classes, it makes sense to simply default-construct the signal in the copy, because the
copy semantics don't include the connection of the slots. There are also scenarios where copying of classes containing
a signal doesn't make sense, in which one can rely on the non-copyable semantics of the contained signal to ensure
that copying and assignment is verboten. To give a better view of what's going on here, consider the class some_class,
defined here:

class some_class {

  boost::signal<void (int)> some_signal;

};

Given this class, the copy constructor and the assignment operator that the compiler generates isn't usable. If code is
written that tries to use these, the compiler complains. For example, the following example tries to copy construct the
some_class sc2 from sc1:

int main() {

  some_class sc1;

  some_class sc2(sc1);

}

When compiling this program, the compiler-generated copy constructor tries to perform a member-by-member copy
of the members of some_class. Because of the private copy constructor of signal, the compiler says something like
this:

c:/boost_cvs/boost/boost/noncopyable.hpp: In copy constructor `

  boost::signals::detail::signal_base::signal_base(const

  boost::signals::detail::signal_base&)':

c:/boost_cvs/boost/boost/noncopyable.hpp:27: error: `

  boost::noncopyable::noncopyable(

    const boost::noncopyable&)' is private

noncopyable_example.cpp:10: error: within this context

So whatever your copying and assignment of classes containing signals need to do, make sure that need doesn't
include copying of the signals!

 Managing Connections

 We have covered how to connect slots to signals, but we haven't yet seen how to disconnect them. There are many
reasons to not leave a slot connected permanently to a signal. Until now, we've ignored it, but boost::signal::connect
returns an instance of boost::signals::connection. Using this connection object, it is possible to disconnect a slot from
the signal, as well as test whether the slot is currently connected to the signal. connections are a sort of handle to the
actual link between the signal and the slot. Because the knowledge of the connection between a signal and a slot is
tracked separately from both, a slot doesn't know if or when it is connected. If a slot won't be disconnected from a
signal, it's typically fine to just ignore the connection returned by signal::connect. Also, a call to disconnect for the
group to which a slot belongs, or a call to disconnect_all_slots will disconnect a slot without the need for the slot's
connection. If it's important to be able to test whether a slot is still connected to a signal, there is no other way than by
saving the connection and using it to query the signal.

 The connection class provides operator<, which makes it possible to store connections in the Standard Library
containers. It also provides operator== for completeness. Finally, the class provides a swap member function that
swaps the signal/slot connection knowledge of one connection with that of another. The following example
demonstrates how to use the signals::connection class:

#include <iostream>

#include <string>

#include "boost/signals.hpp"

class some_slot_type {

  std::string s_;

public:

  some_slot_type(const char* s) : s_(s) {}

  void operator()(const std::string& s) const {

    std::cout << s_ << ": " << s << '\n';

  }

};

int main() {

  boost::signal<void (const std::string&)> sig;

  some_slot_type sc1("sc1");

  some_slot_type sc2("sc2");

  boost::signals::connection c1=sig.connect(sc1);

  boost::signals::connection c2=sig.connect(sc2);

 // Comparison

  std::cout << "c1==c2: " << (c1==c2) << '\n';

  std::cout << "c1<c2:  " << (c1<c2) << '\n';

 // Testing the connection

  if (c1.connected())

    std::cout << "c1 is connected to a signal\n";

 // Swapping and disconnecting

  sig("Hello there");

  c1.swap(c2);

  sig("We've swapped the connections");

  c1.disconnect();

  sig("Disconnected c1, which referred to sc2 after the swap");

}

There are two connection objects in the example, and we saw that they can be compared using operator< and
operator==. The ordering relation that operator< implements is unspecified; it exists to support storing connections in
the Standard Library containers. Equality through operator== is well defined, however. If two connections reference
the exact same physical connection, they are equal. If two connections do not reference any connection, they are
equal. No other pairs of connections are equal. In the example, we also disconnected a connection.

c1.disconnect();

Although c1 originally refers to the connection for sc1, at the time of disconnecting it refers to sc2, because we swap
the contents of the two connections using the member function swap. Disconnecting means that the slot no longer is
notified when the signal is signaled. Here is the output from running the program:

c1==c2: 0

c1<c2:  1

c1 is connected to a signal

sc1: Hello there

sc2: Hello there

sc1: We've swapped the connections

sc2: We've swapped the connections

sc1: Disconnected c1, which referred to sc2 after the swap

As you can see, the last invocation of the signal sig only invokes the slot sc1.

 Sometimes, the lifetime of the connection for a slot relates to a certain scope in the code. This is similar to any other
resource that is required for a given scope, something that is handled using smart pointers or other mechanisms for
scoping. Boost.Signals provides a scoped version for connections called scoped_connection. A scoped_connection
makes sure that the connection is disconnected as the scoped_connection is destroyed. The constructor of
scoped_connection takes a connection object as argument, which it assumes ownership of in a way.

#include <iostream>

#include "boost/signals.hpp"

class slot {

public:

  void operator()() const {

    std::cout << "Something important just happened!\n";

  }

};

int main() {

  boost::signal<void ()> sig;

  {

    boost::signals::scoped_connection s=sig.connect(slot());

  }

  sig();

}

The boost::signals::scoped_connection s is given a small scope inside of main, and after leaving that scope the signal
sig is invoked. There is no output from that, because the scoped_connection has already terminated the connection
between the slot and the signal. Using scoped resources like this simplifies the code and maintenance thereof.

 Creating Slots Using Bind and Lambda

 You've seen how useful and flexible Signals is. However, you'll find even more power when you combine
Boost.Signals with Boost.Bind and Boost.Lambda. Those two libraries, covered in detail in "Library 9: Bind 9" and "
Library 10: Lambda 10," help to create function objects on-the-fly. That means it is possible to create slots (and slot
types) right at the point where they are connected to a signal, rather than having to write a special, single-purpose
class for a slot, create an instance, and then connect it. It also puts the slot logic right where it's used rather than in a
separate part of the source code. Finally, these libraries even make it possible to adapt existing classes that don't
provide a function call operator but have other, suitable means for handling signals.

 In the first example to follow, we'll have a look at how neatly lambda expressions can be used to create a few slot
types. The slots will be created right in the call to connect. The first one simply prints a message to std::cout when the
slot is invoked. The second checks the value of the string passed through the signal to the slot. If it equals "Signal", it
prints one message; otherwise, it prints another message. (These examples are rather contrived, but the expressions
could perform any kind of useful computation.) The last two slots created in the example will do exactly what
double_slot and plus_slot did in an example earlier in the chapter. You'll find the lambda versions far more readable.

#include <iostream>

#include <string>

#include <cassert>

#include "boost/signals.hpp"

#include "boost/lambda/lambda.hpp"

#include "boost/lambda/if.hpp"

int main() {

  using namespace boost::lambda;

  boost::signal<void (std::string)> sig;

  sig.connect(var(std::cout)

    << "Something happened: " << _1 << '\n');

  sig.connect(

    if_(_1=="Signal") [

      var(std::cout) << "Ok, I've got it\n"]

    .else_[

      std::cout << constant("Yeah, whatever\n")]);

  sig("Signal");

  sig("Another signal");

  boost::signal<void (int&)> sig2;

  sig2.connect(0,_1*=2); // Double it

  sig2.connect(1,_1+=3); // Add 3

  int i=12;

  sig2(i);

  assert(i==27);

}

If you aren't yet familiar with lambda expressions in C++ (or otherwise), don't worry if the preceding seems a bit
confusingyou may want to read the chapters on Bind and Lambda first and return to these examples. If you already
have, I am sure that you appreciate the terse code that results from using lambda expressions; and it avoids cluttering
the code with small function objects, too.

 Now let's take a look at using binders to create slot types. Slots must implement a function call operator, but not all
classes that would otherwise be suitable as slots do so. In those cases, it's often possible to use existing member
functions of classes, repackaged for use as slots using binders. Binders can also help readability by allowing the
function (rather than function object) that handles an event to have a meaningful name. Finally, there are situations in
which the same object must respond to different events, each with the same slot signature, but different reactions.
Thus, such objects need different member functions to be called for different events. In each of these cases, there is
no function call operator suitable for connecting to a signal. Thus, a configurable function object is needed, and
Boost.Bind provides (as the bind facility in Boost.Lambda) the means to do that.

 Consider a signal that expects a slot type that returns bool and accepts an argument of type double. Assuming a class
some_class with a member function some_function that has the correct signature, how do you connect
some_class::some_function to the signal? One way would be to add a function call operator to some_class, and have
the function call operator forward the call to some_function. That means changing the class interface unnecessarily and
it doesn't scale well. A binder works much better.

#include <iostream>

#include "boost/signals.hpp"

#include "boost/bind.hpp"

class some_class {

public:

  bool some_function(double d) {

    return d>3.14;

  }

  bool another_function(double d) {

    return d<0.0;

  }

};

int main() {

  boost::signal<bool (double)> sig0;

  boost::signal<bool (double)> sig1;

  some_class sc;

  sig0.connect(

    boost::bind(&some_class::some_function,&sc,_1));

  sig1.connect(

    boost::bind(&some_class::another_function,&sc,_1));

  sig0(3.1);

  sig1(-12.78);

}

Binding this way has an interesting side effect: It avoids unnecessary copying of some_class instances. The binder
holds a pointer to the some_class instance and it's the binder that the signal copies. Unfortunately, there's a potential
lifetime management issue with this approach: If sc is destroyed and then one of the signals is invoked, undefined
behavior results. That's because the binder will have a dangling pointer to sc. By avoiding the copies, we must also
assume the responsibility of keeping the slots alive so long as a connection exists that (indirectly) references them. Of
course, that's what reference-counting smart pointers are for, so the problem is easy to solve.

 Using binders like this is common when using Boost.Signals. Whether you use lambda expressions to create your
slots or binders to adapt existing classes for use as slot types, you'll soon value the synergy among Boost.Signals,
Boost.Lambda, and Boost.Bind. It will save you time and make your code elegant and succinct.





Signals Summary
 Use Signals when



 You need robust callbacks


There can be multiple handlers of events


The connection between the signal and the connected slots should be configurable at runtime

 That Boost.Signals supersedes old-style callbacks should be blatantly clear by now, and this library is one of the best
signals and slots implementations available. The design pattern that the library captures is well known and has been
studied for a long time, so the domain is mature. Some programming languages already have such mechanisms
available directly in the languagefor example, delegates and events in .NET. In C++, the problem is elegantly solved
with libraries. Signals and slots are used to separate the trigger mechanism of an event from the code that handles it.
This separation decouples subsystems and makes them more comprehensible. It also solves the problem of updating
multiple interested parties when important events take place. There are numerous places in a typical program or
library where signals and slots are useful. Whether you are writing a GUI framework or an intrusion detection system
for a power plant, Signals is ready to take care of all your signaling needs. It is easy to learn how to use, yet it also
offers the advanced functionality that is required for complex tasks. For example, custom Combiners make it possible
to write event mechanisms that are tailor-made for a certain domain.

 Boost.Signals was written by Douglas Gregor (who incidentally also wrote Boost.Function). This is a great library;
thank you Doug!



Endnotes 

2.
The Boost.Signals library and the Boost.Regex library
are the only libraries covered in this book that actually
require compiling and linking for use. The process is
simple, and it's described in great detail in the online
documentation, so I won't cover it here.

3.
binary_search has the attractive complexity O(logN).
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